Which of the following occurs in all species of living organisms in may lead to an increase in genetic variation?

Genetic variation refers to differences among the genomes of members of the same species. A genome is all the hereditary information—all the genes—of an organism. For instance, the human genome contains somewhere between twenty and twenty-five thousand genes.

Genes are units of hereditary information, and they carry instructions for building proteins. The genes that are encoded within these proteins are what enable cells to function. Most organisms that reproduce sexually have two copies of each gene, because each parent cell or organism donates a single copy of its genes to its offspring. Additionally, genes can exist in slightly different forms, called alleles, which further adds to genetic variation.

The combination of alleles of a gene that an individual receives from both parents determines what biologists call the genotype for a particular trait, such as hair texture. The genotype that an individual possesses for a trait, in turn, determines the phenotype—the observable characteristics—such as whether that individual actually ends up with straight, wavy, or curly hair.

Genetic variation within a species can result from a few different sources. Mutations, the changes in the sequences of genes in DNA, are one source of genetic variation. Another source is gene flow, or the movement of genes between different groups of organisms. Finally, genetic variation can be a result of sexual reproduction, which leads to the creation of new combinations of genes.

Genetic variation in a group of organisms enables some organisms to survive better than others in the environment in which they live. Organisms of even a small population can differ strikingly in terms of how well suited they are for life in a certain environment. An example would be moths of the same species with different color wings. Moths with wings similar to the color of tree bark are better able to camouflage themselves than moths of a different color. As a result, the tree-colored moths are more likely to survive, reproduce, and pass on their genes. This process is called natural selection, and it is the main force that drives evolution.

Evolution is the process by which populations of organisms change over generations. Genetic variations underlie these changes. Genetic variations can arise from gene variants (also called mutations) or from a normal process in which genetic material is rearranged as a cell is getting ready to divide (known as genetic recombination). Genetic variations that alter gene activity or protein function can introduce different traits in an organism. If a trait is advantageous and helps the individual survive and reproduce, the genetic variation is more likely to be passed to the next generation (a process known as natural selection). Over time, as generations of individuals with the trait continue to reproduce, the advantageous trait becomes increasingly common in a population, making the population different than an ancestral one. Sometimes the population becomes so different that it is considered a new species.

Not all variants influence evolution. Only hereditary variants, which occur in egg or sperm cells, can be passed to future generations and potentially contribute to evolution. Some variants occur during a person’s lifetime in only some of the body’s cells and are not hereditary, so natural selection cannot play a role. Also, many genetic changes have no impact on the function of a gene or protein and are not helpful or harmful. In addition, the environment in which a population of organisms lives is integral to the selection of traits. Some differences introduced by variants may help an organism survive in one setting but not in another—for example, resistance to a certain bacteria is only advantageous if that bacteria is found in a particular location and harms those who live there.

So why do some harmful traits, like genetic diseases, persist in populations instead of being removed by natural selection? There are several possible explanations, but in many cases, the answer is not clear. For some conditions, such as the neurological condition Huntington disease, signs and symptoms occur later in life, typically after a person has children, so the gene variant can be passed on despite being harmful. For other harmful traits, a phenomenon called reduced penetrance, in which some individuals with a disease-associated variant do not show signs and symptoms of the condition, can also allow harmful genetic variations to be passed to future generations. For some conditions, having one altered copy of a gene in each cell is advantageous, while having two altered copies causes disease. The best-studied example of this phenomenon is sickle cell disease: Having two altered copies of the HBB gene in each cell results in the disease, but having only one copy provides some resistance to malaria. This disease resistance helps explain why the variants that cause sickle cell disease are still found in many populations, especially in areas where malaria is prevalent.

Which of the following could increase genetic variation?

And so the answer choices we have are crossing over natural selection, mutation, or immigration. And crossing over increases genetic variation because it increases the diversity of the wheels and therefore genotype and phenotype in a population.

What are the causes of variation?

The two main causes of variation are mutation and genetic recombination in sexual reproduction.

What is most likely happening to the genetic variation?

The genetic variation in the population is increasing due to gene flow.

Which environmental factor would likely lead to an increase in genetic variation?

An increase in food and a decrease in predators would most likely genetic variation in a population.