Which pathologic change is the cause of microaneurysms in nonproliferative retinopathy

  • Cohen MP, Jasti K, Rye DL . Somatomedin in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1977; 45: 236–239

    CAS  PubMed  Google Scholar 

  • The DCCT Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Eng J Med 1993; 329: 977–986

  • UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837–853

  • Ohkubo Y, Kishikawa H, Araki E, Miyata T, Isami S, Motoyoshi S et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995; 28: 103–117

    CAS  PubMed  Google Scholar 

  • Alder VA, Su EN, Yu DY, Cringle SJ, Yu PK . Diabetic retinopathy: early functional changes. Clin Exp Pharmol Physiol 1997; 24: 785–788

    CAS  Google Scholar 

  • Yoshii H, Uchino H, Ohmura C, Watanabe K, Tanaka Y, Kawamori R . Clinical usefulness of measuring urinary polyol excretion by gas-chromatography/mass-spectrometry in type 2 diabetes to assess polyol pathway activity. Diabetes Res Clin Pract 2001; 51: 115–123

    CAS  PubMed  Google Scholar 

  • Chibber R, Molinatti PA, Kohner EM . Intracellular protein glycation in cultured retinal capillary pericytes and endothelial cells exposed to high-glucose concentration. Cell Mol Biol 1999; 45: 47–57

    CAS  PubMed  Google Scholar 

  • Gurler B, Vural H, Yilmaz N, Oguz H, Satici A, Aksoy N . The role of oxidative stress in diabetic retinopathy. Eye 2000; 14: 730–735

    PubMed  Google Scholar 

  • Ways DK, Sheetz MJ . The role of protein kinase C in the development of the complications of diabetes. Vitam Horm 2001; 60: 149–159

    CAS  Google Scholar 

  • Badr GA, Tang J, Ismail-Beigi F, Kern TS . Diabetes downregulates GLUTI expression in the retina and its microvessels but not in the cerebral cortex or its microvessels. Diabetes 2000; 49: 1016–1021

    CAS  PubMed  Google Scholar 

  • Ban Y, Rizzolo LJ . Regulation of glucose transporters during development of the retinal pigment epithelium. Brain Res Dev Brain Res 2000; 121: 89–95

    CAS  PubMed  Google Scholar 

  • Sone H, Deo BK, Kumagai AK . Enhancement of glucose transport by vascular endothelial growth factor in retinal endothelial cells. Invest Ophthalmol Vis Sci 2000; 41: 1876–1884

    CAS  PubMed  Google Scholar 

  • de Abreu JR, Silva R, Cunha-Vaz JG . The blood-reinal barrier in diabetes during puberty. Arch Ophthalmol 1994; 112: 1338–1348

    Google Scholar 

  • Cunha-Vaz JG, Leite E, Sousa JC, de Abreu JR . Blood-retinal barrier permeability and its relation to progression of retinopathy in patients with type 2 diabetes. A four-year follow-up study. Graefes Arch Clin Exp Ophthalmol 1993; 231: 141–145

    CAS  PubMed  Google Scholar 

  • Alder VA, Su EN, Yu DY, Cringle S, Yu PY . Overview of studies on metabolic and vascular regulatory changes in early diabetic retinopathy. Aust NZJ Ophthalmol 1998; 26: 141–148

    CAS  Google Scholar 

  • Laties AM . Central retinal artery innervation. Absence of adrenergic innervation to the intraocular branches. Arch Ophthalmol 1967; 77: 405–409

    CAS  PubMed  Google Scholar 

  • Chen YF, Oparil S . Endothelial dysfunction in the pulmonary vascular bed. Am J Med Sci 2000; 320: 223–232

    CAS  PubMed  Google Scholar 

  • Vallance P, Collier J, Moncada S . Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 1989; 2: 997–1000

    CAS  PubMed  Google Scholar 

  • Pohl U, Wagner K, de Wit C . Endothelium-derived nitric oxide in the control of tissue perfusion and oxygen supply: physiological and pathophysiological implications. Eur Heart J 1993; 14 (Suppl 1): 93–98

    CAS  PubMed  Google Scholar 

  • Stamler JS, Loh E, Roddy MA, Currie KE, Creager MA . Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation 1994; 89: 2035–2040

    CAS  PubMed  Google Scholar 

  • Radomski MW, Palmer RM, Moncada S . Comparative pharmacology of endothelium-derived relaxing factor, nitric oxide and prostacyclin in platelets. Br J Pharmacol 1987; 92: 181–187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arndt H, Russell JB, Kurose I, Kubes P, Granger DN . Mediators of leukocyte adhesion in rat mesenteric venules elicited by inhibition of nitric oxide synthesis. Gastroenterology 1993; 105: 675–680

    CAS  PubMed  Google Scholar 

  • Kubes P, Suzuki M, Granger DN . Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 199; 88: 4651–4655

    Google Scholar 

  • Bath PMW, Hassall DG, Gladwin AM, Palmer RM, Martin JF . Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb 1991; 11: 254–260

    CAS  PubMed  Google Scholar 

  • Heller R, Bussolino F, Ghigo D, Garbarino G, Pescarmona G, Till U, Bosia A . Nitrovasodilators inhibit thrombin-induced platelet-activating factor synthesis in human endothelial cells. Biochem Pharmacol 1992; 44: 223–229

    CAS  PubMed  Google Scholar 

  • Karmakar N . Interaction of transmural pressure and shear stress in the transport of albumin across the rabbit aortic wall. Atherosclerosis 2001; 156: 321–327

    CAS  PubMed  Google Scholar 

  • Imai T, Morita T, Shindo T, Nagai R, Yazaki Y, Kurihara H et al. Vascular smooth muscle cell-directed overexpression of heme oxygenase-1 elevates blood pressure through attenuation of nitric oxide-induced vasodilation in mice. Circ Res 2001; 89: 55–62

    CAS  PubMed  Google Scholar 

  • Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL . Preferential elevation of protein kinase C isoform beta II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc Natl Acad Sci U S A 1992; 89: 11059–11063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoguchi T, Xia P, Kunisaki M, Higashi S, Feener EP, King GL . Insulin’s effect on protein kinase C and diacylglycerol induced by diabetes and glucose in vascular tissues. Am J Physiol 1994; 267: E369–E379

    CAS  PubMed  Google Scholar 

  • Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A et al. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 1996; 272: 728–731

    CAS  PubMed  Google Scholar 

  • Giugliano D, Ceriello A, Paolisso G . Oxidative stress and diabetic vascular complications. Diabetes Care 1996; 19: 257–267

    CAS  PubMed  Google Scholar 

  • Dunlop M . Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int 2000; 58 (Suppl 77): S3–S12

    Google Scholar 

  • Stevens MJ, Dananberg J, Feldman EL, Lattimer SA, Kamijo M, Thomas TP et al. The linked roles of nitric oxide, aldose reductase and (Na+, K+)-ATPase in the slowing of nerve conduction in the streptozotocin diabetic rat. J Clin Invest 1994; 94: 853–859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ceriello A . Hyperglycaemia: the bridge between non-enzymatic glycation and oxidative stress in the pathogenesis of diabetic complications. Diabetes Nutr Metab 1999; 12: 42–46

    CAS  PubMed  Google Scholar 

  • Bucala R, Tracey KJ, Cerami A . Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 1991; 87: 432–438

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine L . Lactacystin stimulates arachidonic acid metabolism in rat liver cells: effects of cell density on arachidonic acid release, PGI2 production and cyclooxygenase activity. Prostag Leukotr Ess 2000; 63: 371–375

    CAS  Google Scholar 

  • Smith JA, Davis CL, Burgess GM . Prostaglandin E2-induced sensitization of bradykinin-evoked responses in rat dorsal root ganglion neurons is mediated by cAMP-dependent protein kinase A. Eur J Neurosci 2000; 12: 3250–3258

    CAS  PubMed  Google Scholar 

  • Hata Y, Clermont A, Yamauchi T, Pierce EA, Suzuma I, Kagokawa H et al. Retinal expression, regulation, and functional bioactivity of prostacyclin-stimulating factor. J Clin Invest 2000; 106: 541–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Sawada S, Tsuda Y, Komatsu S, Akamatsu N, Kono Y et al. The mechanism of thrombin-induced prostacyclin synthesis in human endothelial cells with reference to the gene transcription of prostacyclin-related enzymes and Ca2+ kinetics. J Pharmacol Toxicol Meth 1999; 41: 173–182

    CAS  Google Scholar 

  • Nagao T, Illiano S, Vanhoutte PM . Heterogeneous distribution of endothelium-dependent relaxations resistant to NG-nitro-L-arginine in rats. Am J Physiol 1992; 263: H1090–H1094

    CAS  PubMed  Google Scholar 

  • Campbell WB, Gebremedhin D, Pratt PF, Harder DR . Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ Res 1996; 78: 415–423

    CAS  PubMed  Google Scholar 

  • Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I, Buss R . Cytochrome P450 2C is an EDHF synthase in coronary arteries. Nature 1999; 401: 493–497

    CAS  PubMed  Google Scholar 

  • Fulton D, McGiff JC, Quilley J . Pharmacological evaluation of an epoxide as the putative hyperpolarizing factor mediating the nitric oxide-independent vasodilator effect of bradykinin in the rat heart. J Pharmacol Exp Ther 1998; 287: 497–503

    CAS  PubMed  Google Scholar 

  • Gebremedhin D, Harder DR, Pratt PF, Campbell WB . Bioassay of an endothelium-derived hyperpolarizing factor from bovine coronary arteries: role of a cytochrome P450 metabolite. J Vasc Res 1998; 35: 274–284

    CAS  PubMed  Google Scholar 

  • Hecker M, Bara AT, Bauersachs J, Busse R . Characterization of endothelium-derived hyperpolarizing factor as a cytochrome P450-derived arachidonic acid metabolite in mammals. J Physiol 1994; 481: 407–414

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosolowsky M, Campbell WB . Role of PG12 and epoxyeicosatrienoic acids in relaxation of bovine coronary arteries to arachidonic acid. Am J Physiol 1993; 264: H327–H335

    CAS  PubMed  Google Scholar 

  • Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K et al. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 2000; 106: 1521–1530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knot HJ, Zimmermann PA, Nelson MT . Extracellular K(+)-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K(+) channels. J Physiol 1996; 492: 419–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaytor AT, Martin PE, Edwards DH, Griffith TM . Gap junctional communication underpins EDHF-type relaxations evoked by ACh in the rat hepatic artery. Am J Physiol Heart Circ Physiol 2001; 280: H2441–H2450

    CAS  PubMed  Google Scholar 

  • De Vriese AS, Verbeuren TJ, Van de Voorde J, Lameire NH, Vanhoutte PM . Endothelial dysfunction in diabetes. Br J Pharmacol 2000; 130: 963–974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiowski W, Luscher TF, Linder L, Buhler FR . Endothelin-1-induced vasoconstriction in humans. Reversal by calcium channel blockade but not by nitrovasodilators or endothelium-derived relaxing factor. Circulation 1991; 83: 469–475

    CAS  PubMed  Google Scholar 

  • Wang HG, Shibamoto T, Miyahara T . Endothelin-1 selectively contracts portal vein through both ETA and ETB receptors in isolated rabbit liver. Am J Physiol 1997; 273: G1036–G1043

    CAS  PubMed  Google Scholar 

  • Ito Y, Katori M, Majima M, Kakita A . Constriction of mouse hepatic venules and sinusoids by endothelins through ETB receptor subtype. Int J Microcirc Clin Exp 1996; 16: 250–258

    CAS  PubMed  Google Scholar 

  • Dehouck MP, Vigne P, Torpier G, Breittmayer JP, Cecchelli R, Frelin C . Endothelin-1 as a mediator of endothelial cell–pericyte interactions in bovine brain capillaries. J Cereb Blood Flow Metab 1997; 17: 464–469

    CAS  PubMed  Google Scholar 

  • Goto K, Kasuya Y, Matsuki N, Takuwa Y, Kurihara H, Ishikawa T et al. Endothelin activates the dihydropyridine-sensitive, voltage-dependent Ca2+ channel in vascular smooth muscle. Proc Natl Acad Sci U S A 1989; 86: 3915–3918

    CAS  PubMed  PubMed Central  Google Scholar 

  • Resink TJ, Scott-Burden T, Buhler FR . Activation of phospholipase A2 by endothelin in cultured vascular smooth muscle cells. Biochem Biophys Res Commun 1989; 158: 279–286

    CAS  PubMed  Google Scholar 

  • Hirata Y, Yoshimi H, Takata S, Watanabe TX, Kumagai S, Nakajima K, Sakakibara S . Cellular mechanism of action by a novel vasoconstrictor endothelin in cultured rat vascular smooth muscle cells. Biochem Biophys Res Commun 1988; 154: 868–875

    CAS  PubMed  Google Scholar 

  • Chakrabarti S, Cukiernik M, Hileeto D, Evans T, Chen S . Role of vasoactive factors in the pathogenesis of early changes in diabetic retinopathy. Diabetes Metab Res Rev 2000; 16: 393–407

    CAS  PubMed  Google Scholar 

  • Abdel-Latif AA, Husain S, Yousufzai SY . Role of protein kinase C alpha and mitogen-activated activated protein kinases in endothelin-1-stimulation of cytosolic phospholipase A2 in iris sphincter smooth muscle. J Cardiovasc Pharmacol 2000; 36 (Suppl 5): S117–S119

    CAS  PubMed  Google Scholar 

  • Husain S, Abdel-Latif AA . Endothelin-1 activates p38 mitogen-activated protein kinase and cytosolic phospholipase A2 in cat iris sphincter smooth muscle cells. Biochem J 1999; 342: 87–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Ferrario CM, Brosnihan KB . Losartan inhibits thromboxane A2-induced platelet aggregation and vascular constriction in spontaneously hypertensive rats. J Cardiovasc Pharmacol 1998; 32: 198–205

    CAS  PubMed  Google Scholar 

  • Minhas S, Eardley I, Joyce AD, Morrison JB . The effect of cyclic GMP on rabbit corporal smooth muscle tone and its modulation by cyclo-oxygenase products. Prostaglandins Leukot Essent Fatty Acids 2000; 62: 153–160

    CAS  PubMed  Google Scholar 

  • Katusic ZS, Vanhoutte PM . Superoxide anion is an endothelium-derived contracting factor. Am J Physiol 1989; 257: H33–H37

    CAS  PubMed  Google Scholar 

  • Bohlen HG, Lash JM . Topical hyperglycemia rapidly suppresses EDRF-mediated vasodilation of normal rat arterioles. Am J Physiol 1993; 265: H219–H225

    CAS  PubMed  Google Scholar 

  • Wen FQ, Watanabe K, Yoshida M . Eicosanoid profile in cultured human pulmonary artery smooth muscle cells treated with IL-1 beta and TNF alpha. Prostaglandins Leukot Essent Fatty Acids 1998; 59: 71–75

    CAS  PubMed  Google Scholar 

  • Kador PF, Takahashi Y, Wyman M, Ferris F 3rd . Diabetes-like proliferative retinal changes in galactose-fed dogs. Arch Ophthalmol 1995; 113: 352–354

    CAS  PubMed  Google Scholar 

  • Kerty E, Russell D, Bakke SJ, Nyberg-Hansen R, Rootwell K . Regional cerebral blood flow (rCBF) and cerebral vasoreactivity in patients with retinal ischaemic symptoms. J Neurol Neurosurg Psychiatry 1989; 52: 1345–1350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naruse K, Nakamura J, Hamada Y, Nakayama M, Chaya S, Komori T et al. Aldose reductase inhibition prevents glucose-induced apoptosis in cultured bovine retinal microvascular pericytes. Exp Eye Res 2000; 71: 309–315

    CAS  PubMed  Google Scholar 

  • Iannello S, Cavaleri A, Camuto M, Belfiore F . In vitro inhibition of glucose phosphorylation by an aldose-reductase inhibitor (Tolrestat) in some non-insulin-sensitive rabbit tissues. J Diabetes Complications 1999; 13: 68–73

    CAS  PubMed  Google Scholar 

  • Segawa M, Hirata Y, Fujimori S, Okada K . The development of electroretinogram abnormalities and the possible role of polyol pathway activity in diabetic hyperglycemia and galactosemia. Metabolism 1988; 37: 454–460

    CAS  PubMed  Google Scholar 

  • Robison WG Jr, McBaleb ML, Feld LG, Michaelis OE, Laver N, Mercandetti M, Boninson WG . Degenerated intramural pericytes (‘ghost cells’) in the retinal capillaries of diabetic rats. Curr Eye Res 1991; 10: 339–350

    PubMed  Google Scholar 

  • Goldfarb S, Ziyadeh FN, Kern EF, Simmons DA . Effects of polyol-pathway inhibition and dietary myo-inositol on glomerular hemodynamic function in experimental diabetes mellitus in rats. Diabetes 1991; 40: 465–471

    CAS  PubMed  Google Scholar 

  • Narayanan S . Aldose reductase and its inhibition in the control of diabetic complications. Ann Clin Lab Sci 1993; 23: 148–158

    CAS  PubMed  Google Scholar 

  • Stevens MJ, Henry DN, Thomas TP, Killen PD, Greene DA . Aldose reductase gene expression and osmotic dysregulation in cultured human retinal pigment epithelial cells. Am J Physiol 1993; 265: E428–E438

    CAS  PubMed  Google Scholar 

  • Lim SS, Jung SH, Ji J, Shin KH, Keum SR . Synthesis of flavenoids and their effects on aldose reductase and and sorbitol accumulation in streptozotocin-induced diabetic rat tissues. J Pharm Pharmacol 2001; 53: 653–668

    CAS  PubMed  Google Scholar 

  • Sato S, Secchi EF, Lizak MJ, Fukase S, Ohta N, Murata M et al. Polyol formation and NADPH-dependent reductases in dog retinal capillary pericytes and endothelial cells. Invest Ophthalmol Vis Sci 1999; 40: 697–704

    CAS  PubMed  Google Scholar 

  • Bravi MC, Pietrangeli P, Laurenti O, Basili S, Cassone-Faldetta M, Ferri C, De Mattia G . Polyol pathway activation and glutathione redox status in non-insulin-dependent diabetic patients. Metabolism 1997; 46: 1194–1198

    CAS  PubMed  Google Scholar 

  • Kishi Y, Schmelzer JD, Yao JK, Zollman PJ, Nickander KK, Tritschler HJ, Low PA . Alpha-lipoic acid: effect on glucose uptake, sorbitol pathway, and energy metabolism in experimental diabetic neuropathy. Diabetes 1999; 48: 2045–2051

    CAS  PubMed  Google Scholar 

  • Dunn JA, McCance DR, Thorpe SR, Lyons TJ, Baynes JW . Age-dependent accumulation of N epsilon-(carboxymethyl)lysine and N epsilon-(carboxymethyl)hydroxylysine in human skin collagen. Biochemistry 1991; 30: 1205–1210

    CAS  PubMed  Google Scholar 

  • Khalifah RG, Baynes JW, Hudson BG . Amadorins: novel post-Amadori inhibitors of advanced glycation reactions. Biochem Biophys Res Commun 1999; 257: 251–258

    CAS  PubMed  Google Scholar 

  • Stitt AW . Advanced glycation: an important pathological event in diabetic and age related ocular disease. Br J Ophthalmol 2001; 85: 746–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gurler B, Vural H, Yilmaz N, Oguz H, Satici A, Aksoy N . The role of oxidative stress in diabetic retinopathy. Eye 2000; 14: 730–735

    PubMed  Google Scholar 

  • Agardh E, Hultberg B, Agardh C . Effects of inhibition of glycation and oxidative stress on the development of cataract and retinal vessel abnormalities in diabetic rats. Curr Eye Res 2000; 21: 543–549

    CAS  PubMed  Google Scholar 

  • Kern TS, Kowluru RA, Engerman RL . Abnormalities of retinal metabolism in diabetes or galactosemia: ATPases and glutathione. Invest Ophthalmol Vis Sci 1994; 35: 2962–2967

    CAS  PubMed  Google Scholar 

  • Roginsky V, Barsukova T . Superoxide dismutase inhibits lipid peroxidation in micelles. Chem Phys Lipids 2001; 111: 87–91

    CAS  PubMed  Google Scholar 

  • Sozmen EY, Sozmen B, Delen Y, Onat T . Catalase/superoxide dismutase (sod) and catalase/paraoxonase (pon) ratios may implicate poor glycemic control. Arch Med Res 2001; 32: 283–287

    CAS  PubMed  Google Scholar 

  • Mates JM, Perez-Gomez C, Nunez de Castro I . Antioxidant enzymes and human diseases. Clin Biochem 1999; 32: 595–603

    CAS  PubMed  Google Scholar 

  • Agardh CD, Agardh E, Hultberg B, Qian Y, Ostenson CG . The glutathione levels are reduced in Goto-Kakizaki rat retina, but are not influenced by aminoguanidine treatment. Curr Eye Res 1998; 17: 251–256

    CAS  PubMed  Google Scholar 

  • Kowluru RN, Keern TS, Engerman RL . Abnormalities of retinal metabolism in diabetes or experimental galactosemia. IV. Antioxidant defense system. Free Radic Biol Med 1997; 22: 587–592

    CAS  PubMed  Google Scholar 

  • Nourooz-Zadeh J, Pereira P . F(2) isoprostanes, potential specific markers of oxidative damage in human retina. Ophthalmic Res 2000; 32: 133–137

    CAS  PubMed  Google Scholar 

  • Bohlen HG, Lash JM . Topical hyperglycemia rapidly suppresses EDRG-mediated vasodilation of normal rat arterioles. Am J Physiol 1993; 265: H210–H225

    Google Scholar 

  • Haefliger IO, Flammer J, Beny JL, Luscher TF . Endothelium-dependent vasoactive modulation in the ophthalmic circulation. Prog Retin Eye Res 2001; 20: 209–225

    CAS  PubMed  Google Scholar 

  • Moller P, Loft S, Lundby C, Olsen NV . Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA damage in humans. FASEB J 2001; 15: 1181–1186

    CAS  PubMed  Google Scholar 

  • Hinokio Y, Suzuki S, Hirai M, Chiba M, Hirai A, Toyota T . Oxidative DNA damage in diabetes mellitus: its association with diabetic complications. Diabetologia 1999; 42: 995–998

    CAS  PubMed  Google Scholar 

  • Li W, Yanoff M, Jian B, He Z . Altered mRNA levels of antioxidant enzymes in pre-apoptotic pericytes from human diabetic retinas. Cell Mol Biol 1999; 45: 59–66

    CAS  PubMed  Google Scholar 

  • Podesta F, Romeo G, Liu WH, Krajewski S, Reed JC, Gerhardinger C, Lorenzi M . Bax is increased in the retina of diabetic subjects and is associated with pericyte apoptosis in vivo and in vitro. Am J Pathol 2000; 156: 1025–1032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Yanoff M, Liu X, Ye X . Retinal capillary pericyte apoptosis in early human diabetic retinopathy. Chin Med J (Engl) 1997; 110: 659–663

    CAS  Google Scholar 

  • Kern TS, Engerman RL . Capillary lesions develop in retina rather than cerebral cortex in diabetes and experimental galactosemia. Arch Ophthalmol 1996; 114: 306–310

    CAS  PubMed  Google Scholar 

  • Kern TS, Engerman RL . Vascular lesions in diabetes are distributed non-uniformly within the retina. Exp Eye Res 1995; 60: 545–549

    CAS  PubMed  Google Scholar 

  • Stitt AW, Gardiner TA, Archer DB . Histological and ultrastructural investigation of retinal microaneurysm development in diabetic patients. Br J Ophthalmol 1995; 79: 362–367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishikawa T, Giardino I, Edelstein D, Brownlee M . Changes in diabetic retinal matrix protein mRNA levels in common transgenic mouse strain. Curr Eye Res 2000; 21: 581–587

    CAS  PubMed  Google Scholar 

  • Bek T, Ledet T . Glycoprotein deposition in vascular walls of diabetic retinopathy. A histopathological and immunohistochemical study. Acta Ophthalmol Scand 1996; 74: 385–390

    CAS  PubMed  Google Scholar 

  • Jerdan JA, Michels RG, Glaser BM . Diabetic preretinal membranes. An immunohisochemical study. Arch Opthalmol 1986; 104: 286–290

    CAS  Google Scholar 

  • Casaroli Marano RP, Preissner KT, Vilaro S . Fibronectin, laminin, vitronectin and their receptors at newly-formed capillaries in proliferative diabetic retinopathy. Exp Eye Res 1995; 60: 5–17

    CAS  PubMed  Google Scholar 

  • Roy S, Lorenzi M . Early biosynthetic changes in the diabetic-like retinopathy of galactose-fed rats. Diabetologia 1996; 39: 735–738

    CAS  PubMed  Google Scholar 

  • Hosoda Y, Okada M, Matsumura M, Ogino N, Honda Y, Nagai Y . Epiretinal membrane of proliferative diabetic retinopathy: an immunohistochemical study. Ophthalmic Res 1993; 25: 289–294

    CAS  PubMed  Google Scholar 

  • Abrass CK, Peterson CV, Raugi GJ . Phenotypic expression of collagen types in mesangial matrix of diabetic and nondiabetic rats. Diabetes 1988; 37: 1695–1702

    CAS  PubMed  Google Scholar 

  • Spirin KS, Saghizadeh M, Lewin SL, Zardi L, Kenney MC, Ljubimov AV . Basement membrane and growth factor gene expression in normal and diabetic human retinas. Curr Eye Res 1999; 18: 490–499

    CAS  PubMed  Google Scholar 

  • Jian B, Jones PL, Li Q, Mohler ER 3rd, Schoen FJ, Levy RJ . Matrix metalloproteinase-2 is associated with tenascin-c in calcific aortic stenosis. Am J Pathol 2001; 159: 321–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boeri D, Maiello M, Lorenzi M . Increased prevalence of microthromboses in retinal capillaries of diabetic individuals. Diabetes 2000; 50: 1432–1439

    Google Scholar 

  • Lee IK, Koya D, Ishi H, Kanoh H, King GL . d-Alpha-tocopherol prevents the hyperglycemia induced activation of diacylglycerol (DAG)-protein kinase C (PKC) pathway in vascular smooth muscle cells by an increase of DAG kinase activity. Diabetes Res Clin Pract 1999; 45: 183–190

    CAS  PubMed  Google Scholar 

  • Takahashi T, Hato F, Yamane T, Fukumasu H, Suzuki K, Ogita S et al. Activation of human neutrophils by cytokine-activated endothelial cells. Circ Res 2001; 88: 422–429

    CAS  PubMed  Google Scholar 

  • de la Cruz JP, Moreno A, Ruiz-Ruiz MI, Garcia-Campos J, Sanchez de la Cuesta F . Effect of WEB 2086-BS, an antagonist of platelet-activating factor receptors, on retinal vascularity in diabetic rats. Eur J Pharmacol 1998; 360: 37–42

    CAS  PubMed  Google Scholar 

  • Bussolino F, Gremo F, Tetta C, Pescarmona GP, Camussi G . Production of platelet-activating factor by chick retina. J Biol Chem 1986; 261: 16502–16508

    CAS  PubMed  Google Scholar 

  • Thierry A, Doly M, Braquet P, Cluzel J, Meyniel G . Presence of specific platelet-activating factor binding sites in the rat retina. Eur J Pharmacol 1989; 163: 97–101

    CAS  PubMed  Google Scholar 

  • Omoto S, Nomura S, Shouzu A, Hayakawa T, Shimizu H, Miyake Y et al. Significance of platelet-derived microparticles and activated platelets in diabetic nephropathy. Nephron 1999; 81: 271–277

    CAS  PubMed  Google Scholar 

  • Nomura S, Nakamura T, Cone J, Tandon NN, Kambayashi J . Cytometric analysis of high shear-induced platelet microparticles and effect of cytokines on microparticle generation. Cytometry 2000; 40: 173–181

    CAS  PubMed  Google Scholar 

  • Li M, Goto S, Sakai H, Kim JY, Ichikawa N, Yoshida M et al. Enhanced shear-induced von Willebrand factor binding to platelets in acute myocardial infarction. Thromb Res 2000; 100: 251–261

    CAS  PubMed  Google Scholar 

  • De la Cruz JP, Maximo MA, Blanco E, Moreno A, Sanchez de la Cuesta F . Effect of erythrocytes and prostacyclin production in the effect of fructose and sorbitol on platelet activation in human whole blood in vitro. Thromb Res 1997; 86: 515–524

    CAS  PubMed  Google Scholar 

  • Phillips AO, Morrisey K, Steadman R, Williams JD . Decreased degradation of collagen and fibronectin following exposure of proximal cells to glucose. Exp Nephrol 1999; 7: 449–462

    CAS  PubMed  Google Scholar 

  • De La Cruz JP, Moreno A, Ruiz-Ruiz MI, Garcia Campos J, Sanchez de la Cuesta F . Effect of camonagrel, a selective thromboxane synthase inhibitor, on retinal vascularization in experimental diabetes. Eur J Pharmacol 1998; 350: 81–85

    CAS  PubMed  Google Scholar 

  • Haimovich B, Lipfert L, Brugge JS, Shattil SJ . Tyrosine phosphorylation and cytoskeletal reorganization in platelets are triggered by interaction of integrin receptors with their immobilized ligands. J Biol Chem 1993; 268: 15868–15877

    CAS  PubMed  Google Scholar 

  • Miyamoto K, Khosrof S, Bursell SE, Rohan R, Murata T, Clermont AC et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc Natl Acad Sci U S A 1999; 96: 10836–10841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi M, Imai Y, Oh-ishi S . Phorbol ester stimulates PAF synthesis via the activation of protein kinase C in rat leukocytes. Lipids 1991; 26: 1054–1059

    CAS  PubMed  Google Scholar 

  • Whatley RE, Nelson P, Zimmerman GA, Stevens DL, Parker CJ, McIntyre TM, Prescott SM . The regulation of platelet-activating factor production in endothelial cells. The role of calcium and protein kinase C. J Biol Chem 1989; 264: 6325–6333

    CAS  PubMed  Google Scholar 

  • Okayama N, Coe L, Itoh M, Alexander JS . Exogenous nitric oxide increases neutrophil adhesion to cultured human endothelial monolayers through a protein kinase G dependent mechanism. Inflammation 1999; 23: 37–50

    CAS  PubMed  Google Scholar 

  • Triggiani M, Oriente A, Golino P, Gentile M, Battaglia C, Brevetti G, Marone G . Inhibition of platelet-activating factor synthesis in human neutrophils and platelets by propionyl-L-carnitine. Biochem Pharmacol 1999; 58: 1341–1348

    CAS  PubMed  Google Scholar 

  • Komatsu H, Amano M, Yamaguchi S, Sugahara K . Inhibition of activation of human peripheral blood eosinophils by Y-24180, an antagonist to platelet-activating factor receptor. Life Sci 1999; 65: PL171–PL176

    CAS  PubMed  Google Scholar 

  • Kubes P, Grisham MB, Barrowman JA, Gaginella T, Granger DN . Leukocyte-induced vascular protein leakage in cat mesentery. Am J Physiol 1991; 261: H1872–H1879

    CAS  PubMed  Google Scholar 

  • Zimmerman GA, McIntyre TM, Prescott SM . Thrombin stimulates the adherence of neutrophils to human endothelial cell in vitro. Immunol Today 1992; 13: 93–99

    CAS  PubMed  Google Scholar 

  • Granger DN, Kubes P . The microcirculation and inflammation: modulation of leukocyte-enothelial cell adhesion. J Leukoc Biol 1994; 55: 662–675

    CAS  PubMed  Google Scholar 

  • Joussen AM, Murata T, Tsujikawa A, Kirchhof B, Bursell SE, Adamis AP . Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am J Pathol 2001; 158: 147–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lane TA, Lamkin GE, Wancewicz E . Modulation of endothelial cell expression of intercellular adhesion molecule 1 by protein kinase C activation. Biochem Biophys Res Commun 1989; 161: 945–952

    CAS  PubMed  Google Scholar 

  • Wertheimer SJ, Myers CL, Wallace RW, Parks TP . Intercellular adhesion molecule-1 gene expression in human endothelial cells. Differential regulation by tumor necrosis factor-alpha and phorbol myristate acetate. J Biol Chem 1992; 267: 12030–12035

    CAS  PubMed  Google Scholar 

  • Arndt H, Russell JB, Kurose I, Kubes P, Granger DN . Mediators of leukocyte adhesion in rat mesenteric venules elicited by inhibition of nitric oxide synthesis. Gastroenterology 1993; 105: 675–680

    CAS  PubMed  Google Scholar 

  • Kubes P, Suzuki M, Granger DN . Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991; 88: 4651–4655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Worthen GS, Schwab B 3rd, Elson EL, Downey GP . Mechanics of stimulated neutrophils: cell stiffening induces retention in capillaries. Science 1989; 245: 183–186

    CAS  PubMed  Google Scholar 

  • Kinukawa Y, Shimura M, Tamai M . Quantifying leukocyte dynamics and plugging in retinal microcirculation of streptozotosin-induced diabetic rats. Curr Eye Res 1999; 18: 49–55

    CAS  PubMed  Google Scholar 

  • Meisel SR, Shapiro H, Radnay J, Neuman Y, Khaskia AR, Gruener N et al. Increased expression of neutrophil and monocyte adhesion molecules LFA-1 and Mac-1 and their ligand ICAM-1 and VLA-4 throughout the acute phase of myocardial infarction: possible implications for leukocyte aggregation and microvascular plugging. J Am Coll Cardiol 1998; 31: 120–125

    CAS  PubMed  Google Scholar 

  • Schroder S, Palinski W, Schmid-Schonbein GW . Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am J Pathol 1991; 139: 81–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallow IH, Danis RP, Bindley C, Neider M . Cystoid macular degeneration in experimental branch retinal vein occlusion. Ophthalmology 1988; 95: 1371–1379

    CAS  PubMed  Google Scholar 

  • Bellhorn RW, Burns MS, Benjamin JV . Retinal vessel abnormalities of phototoxic retinopathy in rats. Invest Ophthalmol Vis Sci 1980; 19: 584–595

    CAS  PubMed  Google Scholar 

  • Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I et al. Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest 1998; 101: 1219–1224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gries FA . Alternative therapeutic principles in the prevention of microvascular and neuropathic complications. Diabetes Res Clin Pract 1995; 28 (Suppl): S201–S207

    CAS  PubMed  Google Scholar 

  • Michiels C, Arnould T, Remacle J . Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions. Biochim Biophys Acta 2000; 1497: 1–10

    CAS  PubMed  Google Scholar 

  • Tailor A, Granger DN . Role of adhesion molecules in vascular regulation and damage. Curr Hypertens Rep 2000; 2: 78–83

    CAS  PubMed  Google Scholar 

  • Sivalingam A, Kenney J, Brown GC, Benson WE, Donoso L . Basic fibroblast growth factor levels in the vitreous of patients with proliferative diabetic retinopathy. Arch Ophthalmol 1990; 108: 869–872

    CAS  PubMed  Google Scholar 

  • Michaelson I . The mode of development of the vascular system of the retina with observations on its significance for certain retinal diseases. Trans Ophthalmol Soc UK 1948; 68: 137–180

    Google Scholar 

  • Ashton N . Retinal vascularization in health and disease. Am J Ophthalmol 1957; 44: 7–17

    CAS  PubMed  Google Scholar 

  • Lahrmann C, Bek T . Foveal haemorrhages in diabetic retinopathy. Clinical characteristics and visual outcome. Acta Ophthalmol Scand 2000; 78: 169–172

    CAS  PubMed  Google Scholar 

  • Garner A . Histopathology of diabetic retinopathy in man. Eye 1993; 7: 250–253

    PubMed  Google Scholar 

  • Stefansson E . Laser treatment in diabetes-related eye complications. Nord Med 1992; 107: 309–310

    CAS  PubMed  Google Scholar 

  • Scott IU, Flynn HW Jr, Hughes JR . Echographic evaluation of a patient with diabetes and dense vitreous hemorrhage: an avulsed retinal vessel may mimic a tractional retinal detachment. Am J Ophthalmol 2001; 131: 515–516

    CAS  PubMed  Google Scholar 

  • Zhu H, Bunn HF . Oxygen sensing and signaling: impact on the regulation of physiologically important genes. Respir Physiol 1999; 115: 239–247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Riggs AF . Yeast flavohemoglobin is an ancient protein related to globins and a reductase family. Proc Natl Acad Sci U S A 1992; 89: 5015–5019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caro J . Hypoxia regulation of gene transcription. High Alt Med Biol 2001; 2: 145–154

    CAS  PubMed  Google Scholar 

  • Zhong H, Hanrahan C, van der Poel H, Simons JW . Hypoxia-inducible factor 1 alpha and 1 beta proteins share common signaling pathways in human prostate cancer cells. Biochem Biophys Res Commun 2001; 284: 352–356

    CAS  PubMed  Google Scholar 

  • Mazure NM, Chen EY, Laderoute KR, Giaccia AJ . Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 1997; 90: 3322–3331

    CAS  PubMed  Google Scholar 

  • Ozaki H, Yu AY, Della N, Ozaki K, Luna JD, Yamada H et al. Hypoxia inducible factor-1 alpha is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest Ophthalmol Vis Sci 1999; 40: 182–189

    CAS  PubMed  Google Scholar 

  • Ferrara N, Henzel WJ . Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989; 161: 851–858

    CAS  PubMed  Google Scholar 

  • Levy AP, Levy NS, Wegner S, Goldberg MA . Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J Biol Chem 1995; 270: 13333–13340

    CAS  PubMed  Google Scholar 

  • Williams B . Vascular permeability/vascular endothelial growth factors: a potential role in the pathogenesis and treatment of vascular diseases. Vasc Med 1996; 1: 251–258

    CAS  PubMed  Google Scholar 

  • Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 1994; 331: 1480–1487

    CAS  PubMed  Google Scholar 

  • Ferrara N . Role of vascular endothelial growth factor in the regulation of angiogenesis. Kidney Int 1999; 56: 794–814

    CAS  PubMed  Google Scholar 

  • Mesri M, Morales-Ruiz M, Ackermann EJ, Bennett CF, Pober JS, Sessa WC, Altieri DC . Suppression of vascular endothelial growth factor-mediated endothelial cell protection by surviving targeting. Am J Pathol 2001; 158: 1757–1765

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries C, Escobedo JA, Ueno H, Houck K, Ferrara N, Williams LT . The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992; 255: 989–991

    CAS  PubMed  Google Scholar 

  • Terman BI, Dougher-Vermazen M, Carrion ME, Dimitrov D, Armellino DC, Gospodarowicz D, Bohlen P . Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 1992; 187: 1579–1586

    CAS  PubMed  Google Scholar 

  • Shibuya M, Yamaguchi S, Yamane A, Ikeda T, Tojo A, Matsushime H, Sato M . Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. Oncogene 1990; 5: 519–524

    CAS  PubMed  Google Scholar 

  • Terman BI, Carrion ME, Kovacs E, Rasmussen BA, Eddy RL, Shows TB . Identification of a new endothelial cell growth factor receptor tyrosine kinase. Oncogene 1991; 6: 1677–1683

    CAS  PubMed  Google Scholar 

  • Matthews W, Jordan CT, Gavin M, Jenkins NA, Copeland NG, Lemischka IR . A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. Proc Natl Acad Sci U S A 1991; 88: 9026–9030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn TP, Peters KG, De Vries C, Ferrara N, Williams LT . Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc Natl Acad Sci U S A 1993; 90: 7533–7537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Millauer B, Wizigmann-Voos S, Schnurch H, Martinez R, Moller NP, Risau W, Ullrich A . High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993; 72: 835–846

    CAS  PubMed  Google Scholar 

  • Takahashi T, Yamaguchi S, Chida K, Shibuya M . A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 2001; 20: 2768–2778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Shibuya M . The 230 kDa mature form of KDR/Flk-1 (VEGF receptor-2) activates the PLC-gamma pathway and partially induces mitotic signals in NIH3T3 fibroblasts. Oncogene 1997; 14: 2079–2089

    CAS  PubMed  Google Scholar 

  • Qi JH, Claesson-Welsh L . VEGF-induced activation of phosphoinositide 3-kinase is dependent on focal adhesion kinase. Exp Cell Res 2001; 263: 173–182

    CAS  PubMed  Google Scholar 

  • Suzuma K, Naruse K, Suzuma I, Takahara N, Ueki K, Aiello LP, King GL . Vascular endothelial growth factor induces expression of connective tissue growth factor via KDR, Flt1, and phosphatidylinositol 3-kinase-akt-dependent pathways in retinal vascular cells. J Biol Chem 2000; 275: 40725–40731

    CAS  PubMed  Google Scholar 

  • Enaida H, Kabuyama Y, Oshima Y, Sakamoto T, Kato K, Kochi H, Homma Y . VEGF-dependent signaling in retinal microvascular endothelial cells. Fukushima J Med Sci 1999; 45: 77–91

    CAS  PubMed  Google Scholar 

  • Igal RA, Caviglia JM, de Gomez Dumm IN, Coleman RA . Diacylglycerol generated in CHO cell plasma membrane by phospholipase C is used for triacylglycerol synthesis. J Lipid Res 2001; 42: 88–95

    CAS  PubMed  Google Scholar 

  • Kim MJ, Kim E, Ryu SH, Suh PG . The mechanism of phospholipase C-gamma1 regulation. Exp Mol Med 2000; 32: 101–109

    CAS  PubMed  Google Scholar 

  • Boulton M, Foreman D, Williams G, McLeod D . VEGF localisation in diabetic retinopathy. Br J Ophthalmol 1998; 82: 561–568

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adamis AP, Miller JW, Bernal MT, D’Amico DJ, Folkman J, Yeo TK, Yeo KT . Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 1994; 118: 445–450

    CAS  PubMed  Google Scholar 

  • Malecaze F, Clamens S, Simorre-Pinatel V, Mathis A, Chollet P, Favard C et al. Detection of vascular endothelial growth factor messenger RNA and vascular endothelial growth factor-like activity in proliferative diabetic retinopathy. Arch Ophthalmol 1994; 112: 1476–1482

    CAS  PubMed  Google Scholar 

  • Segawa Y, Shirao Y, Yamagishi S, Higashide T, Kobayashi M, Katsuno K et al. Upregulation of retinal vascular endothelial growth factor mRNAs in spontaneously diabetic rats without ophthalmoscopic retinopathy. A possible participation of advanced glycation end products in the development of the early phase of diabetic retinopathy. Ophthalmic Res 1998; 30: 333–339

    CAS  PubMed  Google Scholar 

  • Simpson DA, Murphy GM, Bhaduri T, Gardiner TA, Archer DB, Stitt AW . Expression of the VEGF gene family during retinal vaso-obliteration and hypoxia. Biochem Biophys Res Commun 1999; 262: 333–340

    CAS  PubMed  Google Scholar 

  • Grishko V, Solomon M, Breit JF, Killilea DW, Ledoux SP, Wilson GL, Gillespie MN . Hypoxia promotes oxidative base modifications in the pulmonary artery endothelial cell VEGF gene. FASEB J 2001; 15: 1267–1269

    CAS  PubMed  Google Scholar 

  • Smith G, McLeod D, Foreman D, Boulton M . Immunolocalisation of the VEGF receptors FLT-1, KDR, and FLT-4 in diabetic retinopathy. Br J Ophthalmol 1999; 83: 486–494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert RE, Vranes D, Berka JL, Kelly DJ, Cox A, Wu LL et al. Vascular endothelial growth factor and its receptors in control and diabetic rat eyes. Lab Invest 1998; 78: 1017–1027

    CAS  PubMed  Google Scholar 

  • Amin RH, Frank RN, Kennedy A, Eliott D, Puklin JE, Abrams GW . Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 1997; 38: 36–47

    CAS  PubMed  Google Scholar 

  • Sone H, Kawakami Y, Okuda Y, Sekine Y, Honmura S, Matsuo K et al. Ocular vascular endothelial growth factor levels in diabetic rats are elevated before observable retinal proliferative changes. Diabetologia 1997; 40: 726–730

    CAS  PubMed  Google Scholar 

  • Clermont AC, Aiello LP, Mori F, Aiello LM, Bursell SE . Vascular endothelial growth factor and severity of nonproliferative diabetic retinopathy mediate retinal hemodynamics in vivo: a potential role for vascular endothelial growth factor in the progression of nonproliferative diabetic retinopathy. Am J Ophthalmol 1997; 124: 433–446

    CAS  PubMed  Google Scholar 

  • Tolentino MJ, Miller JW, Gragoudas ES, Jakobiec FA, Flynn E, Chatzistefanou K et al. Intravitreous injections of vascular endothelial growth factor produce retinal ischemia and microangiopathy in an adult primate. Ophthalmology 1996; 103: 1820–1828

    CAS  PubMed  Google Scholar 

  • Kevil CG, Payne DK, Mire E, Alexander JS . Vascular permeability factor/vascular endothelial cell growth factor-mediated permeability occurs through disorganization of endothelial junctional proteins. J Biol Chem 1998; 273: 15099–15103

    CAS  PubMed  Google Scholar 

  • Esser S, Lampugnani MG, Corada M, Dejana E, Risau W . Vascular endothelial growth factor induces VE-cadherin tyrosine phosphorylation in endothelial cells. J Cell Sci 1998; 111: 1853–1865

    CAS  PubMed  Google Scholar 

  • Yoshida A, Feke GT, Morales-Stoppello J, Collas GD, Goger DG, McMeel JW . Retinal blood flow alterations during progression of diabetic retinopathy. Arch Ophthalmol 1983; 101: 225–227

    CAS  PubMed  Google Scholar 

  • Robinson GS, Pierce EA, Rook SL, Foley E, Webb R, Smith LE . Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. Proc Natl Acad Sci U S A 1996; 93: 4851–4856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adamis AP, Shima DT, Tolentino MJ, Gragoudas ES, Ferrara N, Folkman J et al. Inhibition of vascular endothelial growth factor prevents retinal ischemia-associated iris neovascularization in a nonhuman primate. Arch Ophthalmol 1996; 114: 66–71

    CAS  PubMed  Google Scholar 

  • Aiello LP, Pierce EA, Foley ED, Takagi H, Chen H, Riddle L et al. Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci U S A 1995; 92: 10457–10461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poulsen JE . Recovery from retinopathy in a case of diabetes with Simmond’s disease. Diabetes 1953; 2: 7–12

    CAS  PubMed  Google Scholar 

  • Smith LE, Kopchick JJ, Chen W, Knapp J, Kinose F, Daley D et al. Essential role of growth hormone in ischemia-induced retinal neovascularization. Science 1997; 276: 1706–1709

    CAS  PubMed  Google Scholar 

  • Hyer SL, Sharp PS, Brooks RA, Burrin JM, Kohner EM . A two-year follow-up study of serum insulinlike growth factor-I in diabetics with retinopathy. Metabolism 1989; 38: 586–589

    CAS  PubMed  Google Scholar 

  • Hyer SL, Sharp PS, Brooks RA, Burrin JM, Kohner EM . Serum IGF-1 concentration in diabetic retinopathy. Diabet Med 1988; 5: 356–360

    CAS  PubMed  Google Scholar 

  • Grant MB, Mames RN, Fitzgerald C, Ellis EA, Aboufriekha M, Guy J . Insulin-like growth factor I acts as an angiogenic agent in rabbit cornea and retina: comparative studies with basic fibroblast growth factor. Diabetologia 1993; 36: 282–291

    CAS  PubMed  Google Scholar 

  • Lee HC, Lee KW, Chung CH, Chung YS, Lee EJ, Lim SK et al. IGF-I of serum and vitreous fluid in patients with diabetic proliferative retinopathy. Diabetes Res Clin Pract 1994; 24: 85–88

    CAS  PubMed  Google Scholar 

  • Nakao-Hayashi J, Ito H, Kanayasu T, Morita I, Murota S . Stimulatory effects of insulin and insulin-like growth factor I on migration and tube formation by vascular endothelial cells. Atherosclerosis 1992; 92: 141–149

    CAS  PubMed  Google Scholar 

  • King GL, Goodman AD, Buzney S, Moses A, Kahn CR . Receptors and growth promoting effects of insulin and insulin-like growth factors on cells from bovine retinal capillaries and aorta. J Clin Invest 1985; 75: 1028–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicosia RF, Nicosia SV, Smith M . Vascular endothelial growth factor, platelet-derived growth factor, and insulin-like growth factor-1 promote rat aortic angiogenesis in vitro. Am J Pathol 1994; 145: 1023–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grant MB, Mames RN, Fitzgerald C, Ellis EA, Aboufriekha M, Guy J . Insulin-like growth factor I acts as an angiogenic agent in rabbit cornea and retina: comparative studies with basic fibroblast growth factor. Diabetologia 1993; 36: 282–291

    CAS  PubMed  Google Scholar 

  • Boney CM, Sekimoto H, Gruppuso PA, Frackelton AR Jr . Src family tyrosine kinases participate in insulin-like growth factor in mitogenic signaling in 3t3-11 cells. Cell Growth Differ 2001; 12: 379–386

    CAS  PubMed  Google Scholar 

  • Shoba LN, Newman M, Liu W, Lowe WL Jr . LY 294002, an inhibitor of phosphatidylinositol 3-kinase, inhibits GH-mediated expression of the IGF-I gene in rat hepatocytes. Endocrinology 2001; 142: 3980–3986

    CAS  PubMed  Google Scholar 

  • Yamada M, Tanabe K, Wada K, Shimoke K, Ishikawa Y, Ikeuchi T et al. Differences in survival-promoting effects and intracellular signaling properties of BDNF and IGF-1 in cultured cerebral cortical neurons. J Neurochem 2001; 78: 940–951

    CAS  PubMed  Google Scholar 

  • Arsenijevic Y, Weiss S, Schneider B, Aebischer P . Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci 2001; 21: 7194–7202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burren CP, Berka JL, Edmondson SR, Werther GA, Batch JA . Localization of mRNAs for insulin-like growth factor-I (IGF-I), IGF-I receptor, and IGF binding proteins in rat eye. Invest Ophthalmol Vis Sci 1996; 37: 1459–1468

    CAS  PubMed  Google Scholar 

  • Tollefsen SE, Heath-Monnig E, Cascieri MA, Bayne ML, Daughaday WH . Endogenous insulin-like growth factor (IGF) binding proteins cause IGF-1 resistance in cultured fibroblasts from a patient with short stature. J Clin Invest 1991; 87: 1241–1250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer-Schwickerath R, Pfeiffer A, Blum WF, Freyberger H, Klein M, Losche C et al. Vitreous levels of the insulin-like growth factors I and II, and the insulin-like growth factor binding proteins 2 and 3, increase in neovascular eye disease. Studies in nondiabetic and diabetic subjects. J Clin Invest 1993; 92: 2620–2625

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boulton M, Gregor Z, McLeod D, Charteris D, Jarvis-Evans J, Moriarty P et al. Intravitreal growth factors in proliferative diabetic retinopathy: correlation with neovascular activity and glycaemic management. Br J Ophthalmol 1997; 81: 228–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burgos R, Mateo C, Canton A, Hernandez C, Mesa J, Simo R . Vitreous levels of IGF-I, IGF binding protein 1, and IGF binding protein 3 in proliferative diabetic retinopathy: a case-control study. Diabetes Care 2000; 23: 80–83

    CAS  PubMed  Google Scholar 

  • Spoerri PE, Ellis EA, Tarnuzzer RW, Grant MB . Insulin-like growth factor: receptor and binding proteins in human retinal endothelial cell cultures of diabetic and non-diabetic origin. Growth Horm IGF Res 1998; 8: 125–132

    CAS  PubMed  Google Scholar 

  • Tucci M, Nygard K, Tanswell BV, Farber HW, Hill DJ, Han VK . Modulation of insulin-like growth factor (IGF) and IGF binding protein biosynthesis by hypoxia in cultured vascular endothelial cells. J Endocrinol 1998; 157: 13–24

    CAS  PubMed  Google Scholar 

  • Tazuke SI, Mazure NM, Sugawara J, Carland G, Faessen GH, Suen LF et al. Hypoxia stimulates insulin-like growth factor binding protein 1 (IGFBP-1) gene expression in HepG2 cells: a possible model for IGFBP-1 expression in fetal hypoxia. Proc Natl Acad Sci USA 1998; 95: 10188–10193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moriarty P, Boulton M, Dickson A, McLeod D . Production of IGF-I and IGF binding proteins by retinal cells in vitro. Br J Ophthalmol 1994; 78: 638–642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Presta M, Maier JA, Rusnati M, Ragnotti G . Basic fibroblast growth factor is released from endothelial extracellular matrix in a biologically active form. J Cell Physiol 1989; 140: 68–74

    CAS  PubMed  Google Scholar 

  • Globus RK, Plouet J, Gospodarowicz D . Cultured bovine bone cells synthesize basic fibroblast growth factor and store it in their extracellular matrix. Endocrinology 1989; 124: 1539–1547

    CAS  PubMed  Google Scholar 

  • Bashkin P, Doctrow S, Klagsbrun M, Svahn CM, Folkman J, Vlodavsky I . Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules. Biochemistry 1989; 28: 1737–1743

    CAS  PubMed  Google Scholar 

  • Stavri GT, Zachary IC, Baskerville PA, Martin JF, Erusalimsky JD . Basic fibroblast growth factor upregulates the expression of vascular endothelial growth factor in vascular smooth muscle cells. Synergistic interaction with hypoxia. Circulation 1995; 92: 11–4

    CAS  PubMed  Google Scholar 

  • Ozaki H, Okamoto N, Ortega S, Chang M, Ozaki K, Sadda S et al. Basic fibroblast growth factor is neither necessary nor sufficient for the development of retinal neovascularization. Am J Pathol 1998; 153: 757–765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES et al. Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 1998; 141: 1659–1673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams LT . Signal transduction by the platelet-derived growth factor receptor. Science 1989; 243: 1564–1570

    CAS  PubMed  Google Scholar 

  • Claesson-Welsh L . Platelet-derived growth factor receptor signals. J Biol Chem 1994; 269: 32023–32026

    CAS  PubMed  Google Scholar 

  • Kourembanas S, Hannan RL, Faller DV . Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest 1990; 86: 670–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwabara K, Ogawa S, Matsumoto M, Koga S, Clauss M, Pinsky DJ et al. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci USA 1995; 92: 4606–4610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freyberger H, Brocker M, Yakut H, Hammer J, Effert R, Schifferdecker E et al. Increased levels of platelet-derived growth factor in vitreous fluid of patients with proliferative diabetic retinopathy. Exp Clin Endocrinol Diabetes 2000; 108: 106–109

    CAS  PubMed  Google Scholar 

  • Koyama N, Watanabe S, Tezuka M, Morisaki N, Saito Y, Yoshida S . Migratory and proliferative effect of platelet-derived growth factor in rabbit retinal endothelial cells: evidence of an autocrine pathway of platelet-derived growth factor. J Cell Physiol 1994; 158: 1–6

    CAS  PubMed  Google Scholar 

  • Smits A, Hermansson M, Nister M, Karnushina I, Heldin CH, Westermark B, Funa K . Rat brain capillary endothelial cells express functional PDGF B-type receptors. Growth Factors 1989; 2: 1–8

    CAS  PubMed  Google Scholar 

  • Battegay EJ, Rupp J, Iruela-Arispe L, Sage EH, Pech M . PDGF-BB modulates endothelial proliferation and angiogenesis in vitro via PDGF beta-receptors. J Cell Biol 1994; 125: 917–928

    CAS  PubMed  Google Scholar 

  • Forsberg K, Valyi-Nagy I, Heldin CH, Herlyn M, Westermark B . Platelet-derived growth factor (PDGF) in oncogenesis: development of a vascular connective tissue stroma in xenotransplanted human melanoma producing PDGF-BB. Proc Natl Acad Sci USA 1993; 90: 393–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laterra J, Nam M, Rosen E, Rao JS, Lamszus K, Goldberg ID, Johnston P . Scatter factor/hepatocyte growth factor gene transfer enhances glioma growth and angiogenesis in vivo. Lab Invest 1997; 76: 565–577

    CAS  PubMed  Google Scholar 

  • Shinozuka H, Kubo Y, Katyal SL, Coni P, Ledda-Columbano GM, Columbano A, Nakamura T . Roles of growth factors and of tumor necrosis factor-alpha on liver cell proliferation induced in rats by lead nitrate. Lab Invest 1994; 71: 35–41

    CAS  PubMed  Google Scholar 

  • Pons E, Uphoff CC, Drexler HG . Expression of hepatocyte growth factor and its receptor c-met in human leukemia-lymphoma cell lines. Leuk Res 1998; 22: 797–804

    CAS  PubMed  Google Scholar 

  • He PM, He S, Garner JA, Ryan SJ, Hinton DR . Retinal pigment epithelial cells secrete and respond to hepatocyte growth factor. Biochem Biophys Res Commun 1998; 249: 253–257

    CAS  PubMed  Google Scholar 

  • Cai W, Rook SL, Jiang ZY, Takahara N, Aiello LP . Mechanisms of hepatocyte growth factor-induced retinal endothelial cell migration and growth. Invest Ophthalmol Vis Sci 2000; 41: 1885–1893

    CAS  PubMed  Google Scholar 

  • Grant DS, Kleinman HK, Goldberg ID, Bhargava MM, Nickoloff BJ, Kinsella JL et al. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci USA 1993; 90: 1937–1941

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamszus K, Schmidt NO, Jin L, Laterra J, Zagzag D, Way D et al. Scatter factor promotes motility of human glioma and neuromicrovascular endothelial cells. Int J Cancer 1998; 75: 19–28

    CAS  PubMed  Google Scholar 

  • Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, Aaronson SA . Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991; 251: 802–804

    CAS  PubMed  Google Scholar 

  • Shiota G, Kawasaki H, Nakamura T, Schmidt EV . Inhibitory effect of hepatocyte growth factor against FaO hepatocellular carcinoma cells may be associated with changes of intracellular signalling pathways mediated by protein kinase C. Res Commun Mol Pathol Pharmacol 1994; 85: 271–278

    CAS  PubMed  Google Scholar 

  • Graziani A, Gramaglia D, Cantley LC, Comoglio PM . The tyrosine-phosphorylated hepatocyte growth factor/scatter factor receptor associates with phosphatidylinositol 3-kinase. J Biol Chem 1991; 266: 22087–22090

    CAS  PubMed  Google Scholar 

  • Derman MP, Cunha MJ, Barros EJ, Nigam SK, Cantley LG . HGF-mediated chemotaxis and tubulogenesis require activation of the phosphatidylinositol 3-kinase. Am J Physiol 1995; 268: F1211–F1217

    CAS  PubMed  Google Scholar 

  • Morishita R, Nakamura S, Nakamura Y, Aoki M, Moriguchi A, Kida I et al. Potential role of an endothelium-specific growth factor, hepatocyte growth factor, on endothelial damage in diabetes. Diabetes 1997; 46: 138–142

    CAS  PubMed  Google Scholar 

  • Van Belle E, Witzenbichler B, Chen D, Silver M, Chang L, Schwall R, Isner JM . Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation 1998; 97: 381–390

    CAS  PubMed  Google Scholar 

  • Wojta J, Kaun C, Breuss JM, Koshelnick Y, Beckmann R, Hattey E et al. Hepatocyte growth factor increases expression of vascular endothelial growth factor and plasminogen activator inhibitor-1 in human keratinocytes and the vascular endothelial growth factor receptor flk-1 in human endothelial cells. Lab Invest 1999; 79: 427–438

    CAS  PubMed  Google Scholar 

  • Gille J, Khalik M, Konig V, Kaufmann R . Hepatocyte growth factor/scatter factor (HGF/SF) induces vascular permeability factor (VPF/VEGF) expression by cultured keratinocytes. J Invest Dermatol 1998; 111: 1160–1165

    CAS  PubMed  Google Scholar 

  • Maglione D, Guerriero V, Viglietto G, Delli-Bovi P, Persico MG . Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc Natl Acad Sci USA 1991; 88: 9267–9271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Terman B, Khandke L, Dougher-Vermazan M, Maglione D, Lassam NJ, Gospodarowicz D et al. VEGF receptor subtypes KDR and FLT1 show different sensitivities to heparin and placenta growth factor. Growth Factors 1994; 11: 187–195

    CAS  PubMed  Google Scholar 

  • Landgren E, Schiller P, Cao Y, Claesson-Welsh L . Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and migration of endothelial cells expressing Flt 1. Oncogene 1998; 16: 359–367

    CAS  PubMed  Google Scholar 

  • Seetharam L, Gotoh N, Maru Y, Neufeld G, Yamaguchi S, Shibuya M . A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 1995; 10: 135–147

    CAS  PubMed  Google Scholar 

  • Ziche M, Maglione D, Ribatti D, Morbidelli L, Lago CT, Battisti M et al. Placenta growth factor-1 is chemotactic, mitogenic, and angiogenic. Lab Invest 1997; 76: 517–531

    CAS  PubMed  Google Scholar 

  • Cao Y, Chen H, Zhou L, Chiang MK, Anand-Apte B, Weatherbee JA et al. Heterodimers of placenta growth factor/vascular endothelial growth factor. Endothelial activity, tumor cell expression, and high affinity binding to Flk-1/KDR. J Biol Chem 1996; 271: 3154–3162

    CAS  PubMed  Google Scholar 

  • Yamashita H, Eguchi S, Watanabe K, Takeuchi S, Yamashita T, Miura M . Expression of placenta growth factor (PIGF) in ischaemic retinal diseases. Eye 1999; 13: 372–374

    PubMed  Google Scholar 

  • Khaliq A, Foreman D, Ahmed A, Weich H, Gregor Z, McLeod D, Boulton M . Increased expression of placenta growth factor in proliferative diabetic retinopathy. Lab Invest 1998; 78: 109–116

    CAS  PubMed  Google Scholar 

  • Spirin KS, Saghizadeh M, Lewin SL, Zardi L, Kenney MC, Ljubimov AV . Basement membrane and growth factor gene expression in normal and diabetic human retinas. Curr Eye Res 1999; 18: 490–499

    CAS  PubMed  Google Scholar 

  • Simpson DA, Murphy GM, Bhaduri T, Gardiner TA, Archer DB, Stitt AW . Expression of the VEGF gene family during retinal vaso-obliteration and hypoxia. Biochem Biophys Res Commun 1999; 262: 333–340

    CAS  PubMed  Google Scholar 

  • Yonekura H, Sakurai S, Liu X, Migita H, Wang H, Yamagishi S et al. Placenta growth factor and vascular endothelial growth factor B and C expression in microvascular endothelial cells and pericytes. Implication in autocrine and paracrine regulation of angiogenesis. J Biol Chem 1999; 274: 35172–35178

    CAS  PubMed  Google Scholar 

  • Tallquist MD, Soriano P, Klinghoffer RA . Growth factor signaling pathways in vascular development. Oncogene 1999; 18: 7917–7932

    CAS  PubMed  Google Scholar 

  • Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V et al. Isolation of angiopoietin-1, a ligand for the Tie2 receptor, by secretion-trap expression cloning. Cell 1996; 87: 1161–1169

    CAS  PubMed  Google Scholar 

  • Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C et al. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 1997; 277: 55–60

    CAS  PubMed  Google Scholar 

  • Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC, Davis S et al. Requisite role of angiopoietin-1, a ligand for the Tie2 receptor, during embryonic angiogenesis. Cell 1997; 87: 1171–1180

    Google Scholar 

  • Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, Li LY . Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res 1999; 58: 224–237

    CAS  PubMed  Google Scholar 

  • Koblizek TI, Weiss C, Yancopoulos GD, Deutsch U, Risau W . Angiopoietin-1 induces sprouting angiogenesis in vitro. Curr Biol 1998; 8: 529–532

    CAS  PubMed  Google Scholar 

  • Kukk E, Wartiovaara U, Gunji Y, Kaukonen J, Buhring HJ, Rappold I et al. Analysis of Tie receptor tyrosine kinase in haemopoietic progenitor and leukaemia cells. Br J Haematol 1997; 98: 195–203

    CAS  PubMed  Google Scholar 

  • Stratmann A, Risau W, Plate KH . Cell type-specific expression of angiopoietin-1 and angiopoietin-2 suggests a role in glioblastoma angiogenesis. Am J Pathol 1998; 153: 1459–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hackett SF, Ozaki H, Strauss RW, Wahlin K, Suri C, Maisonpierre P et al. Angiopoietin 2 expression in the retina: upregulation during physiologic and pathologic neovascularization. J Cell Physiol 2000; 184: 275–284

    CAS  PubMed  Google Scholar 

  • Oh H, Takagi H, Suzuma K, Otani A, Matsumura M, Honda Y . Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 1999; 274: 15732–15739

    CAS  PubMed  Google Scholar 

  • Tombran-Tink J, Chader GG, Johnson LV . PEDF—a pigment epithelium-derived factor with potent neuronal differentiative activity. Exp Eye Res 1991; 53: 411–414

    CAS  PubMed  Google Scholar 

  • Chader GJ . PEDF: raising both hopes and questions in controlling angiogenesis. Proc Natl Acad Sci USA 2001; 98: 2122–2124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson DW, Volpert OV, Gillis P, Crawford SE, Xu HJ, Bendict W, Bouck NP . Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999; 285: 245–248

    CAS  PubMed  Google Scholar 

  • Spranger J, Osterhoff M, Reimann M, Mohlig M, Ristow M, Francis MK et al. Loss of the anti-angiogenic pigment epithelium-derived factor in patients with angiogenic eye disease. Diabetes 2001; 50: 2641–2645

    CAS  PubMed  Google Scholar 

  • Stellmach V, Crawford SE, Zhou W, Bouck N . Prevention of ischemia-induced retinopathy by the natural ocular antiangiogenic agent pigment epithelium-derived factor. Proc Nat Acad Sci USA 2001; 98: 2593–2597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mori K, Duh E, Gehlbach P, Ando A, Takahashi K, Pearlman J et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J Cell Physiol 2001; 188: 253–263

    CAS  PubMed  Google Scholar 

  • Which pathologic change is the cause of microaneurysms?

    Hyperglycemia results in damage to retinal capillaries through the formation of advanced glycation endproducts (AGEs). The resulting endothelial damage compromises capillary walls and results in microaneurysms.

    Which risk factors is associated with macrovascular complications of diabetes mellitus?

    The strongest risk factors for CVD and mortality in T1D continue to be hyperglycemia, hypertension, dyslipidemia, diabetic kidney disease, insulin resistance and obesity (5–7).

    What are the microvascular complications of diabetes?

    Definitions. Microvascular complications of diabetes are those long-term complications that affect small blood vessels. These typically include retinopathy, nephropathy, and neuropathy. Retinopathy is divided into two main categories: Nonproliferative retinopathy and proliferative retinopathy.

    Which complication of diabetes can cause hypoglycemic unawareness?

    In insulin-deficient diabetes (exogenous) insulin levels do not decrease as glucose levels fall, and the combination of deficient glucagon and epinephrine responses causes defective glucose counterregulation. Reduced sympathoadrenal responses cause hypoglycemia unawareness.