The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

Description

The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

There are three basic types of personal monitors: film badges, TLD & pocket ionization chambers.
Radiation is not detectable by ordinary means; that is, we cannot see, hear or feel it. The detection of radiation requires instruments specifically designed to detect ionizing radiation. This is done indirectly by measuring the effect radiation has on a medium such as air (ionization) or film (density). 
Occupational dose limits are set by law to protect people who work with ionizing radiation and the limits are 50 rem/year to the occupational staff. The best way to determine how much exposure a person receives over a long time period is through the use of personal dosimetry devices.

TLD systems were introduced in SMC on 30/10/1997. Before that, film badges were sent to UK for processing & reading and results were received within 2 months.

Procedure

TLD use lithium fluoride (LiF), which stores radiant energy that is released when heated. This energy is emitted as light, which is measured by a device that then records the exposure based on light emitted. TLDs can be worn for up three months, can be reused & are more sensitive than film badges (to about 5 mrem or 0.05 mSv).
Following irradiation, the TLD phosphor is placed on a special dish, or planchet, for analysis in an instrument called a TLD analyzer. The temperature of the planchet can be carefully controlled. The TLD is reusable. When irradiated, the energy absorbed by the TLD remains stored until released as visible light by heat during analysis. This heating restores the crystal to its original condition and makes it ready for another radiation exposure.
TLD is used for both patient and personnel radiation monitoring (PRM), TLD badge should be worn at the level of the waist or at the collar/neck region. Radiographers rarely wear ring badges; most often, they are worn by nuclear medicine technologists because of their exposure from handling radioisotopes.


Location

There is 1 room located in the Radiology Department - SMC Old Building - Ground Floor (adjacent to the Chief Radiologic Technologist office).

Tel. No.:  17285541 / 17284017 / 17284023 

Ext. No. : 4023

Fax No.:  17285540


Equipment

Ministry of Health has one personal TLD system - modle 4500, manufactured by Harwsh.


Available Staff

Jagadeesh Babu & Nada Ali: Nuclear Medicine Physicist

Technologist: Mahdi Al Kalaiti
Radiographers: Amira Hassan & S.Majeed Al.Alawi
Radiation Protection Consultant: Jaffer Matter


Timing

Usually, TLD badge readings are taken in the beginning of each month. There is a special schedule for each department in MOH and BDF hospital to read the TLD badges.

The schedule for personal monitoring TLD badge readings is as follows:

  1. SMC Radiology : 1st to 3rd working day (each month).
  2. Health centers & Dental Staff : 3rd to 8th working day (each month).
  3. Oncology & Bio-Medical Eng.: 5th working day (each month).
  4. CHS students: 6TH working day (each month).
  5. Operation theater, ward 411 & endoscopy unit: 7th working day (each month).
  6. BDF Hospital & Sh. Issa Military Airport: 8th working day (each month).

The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

A radiation dosimeter is a device that measures dose uptake of external ionizing radiation. It is worn by the person being monitored when used as a personal dosimeter, and is a record of the radiation dose received. Modern electronic personal dosimeters can give a continuous readout of cumulative dose and current dose rate, and can warn the wearer with an audible alarm when a specified dose rate or a cumulative dose is exceeded. Other dosimeters, such as thermoluminescent or film types, require processing after use to reveal the cumulative dose received, and cannot give a current indication of dose while being worn.

Personal dosimeters[edit]

The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

Example of "whole body" dosimeter positioning

The personal ionising radiation dosimeter is of fundamental importance in the disciplines of radiation dosimetry and radiation health physics and is primarily used to estimate the radiation dose deposited in an individual wearing the device.

Ionising radiation damage to the human body is cumulative, and is related to the total dose received, for which the SI unit is the sievert. Radiographers, nuclear power plant workers, doctors using radiotherapy, HAZMAT workers, and other people in situations that involve handling radionuclides are often required to wear dosimeters so a record of occupational exposure can be made. Such devices are known as "legal dosimeters" if they have been approved for use in recording personnel dose for regulatory purposes.

Dosimeters are typically worn on the outside of clothing, a "whole body" dosimeter is worn on the chest or torso to represent dose to the whole body. This location monitors exposure of most vital organs and represents the bulk of body mass. Additional dosimeters can be worn to assess dose to extremities or in radiation fields that vary considerably depending on orientation of the body to the source.

Modern types[edit]

The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

View of readout on an electronic personal dosimeter. The clip is used to attach it to the wearer's clothing.

The electronic personal dosimeter, the most commonly used type, is an electronic device that has a number of sophisticated functions, such as continual monitoring which allows alarm warnings at preset levels and live readout of dose accumulated. These are especially useful in high dose areas where residence time of the wearer is limited due to dose constraints. The dosimeter can be reset, usually after taking a reading for record purposes, and thereby re-used multiple times.

MOSFET dosimeter[edit]

Metal–oxide–semiconductor field-effect transistor dosimeters [1] are now used as clinical dosimeters for radiotherapy radiation beams. The main advantages of MOSFET devices are:

1. The MOSFET dosimeter is direct reading with a very thin active area (less than 2 μm).

2. The physical size of the MOSFET when packaged is less than 4 mm.

3. The post radiation signal is permanently stored and is dose rate independent.

Gate oxide of MOSFET which is conventionally silicon dioxide is an active sensing material in MOSFET dosimeters. Radiation creates defects (acts like electron-hole pairs) in oxide, which in turn affects the threshold voltage of the MOSFET. This change in threshold voltage is proportional to radiation dose. Alternate high-k gate dielectrics like hafnium dioxide[2] and aluminum oxides are also proposed as a radiation dosimeters.

Thermoluminescent dosimeter[edit]

A thermoluminescent dosimeter measures ionizing radiation exposure by measuring the intensity of light emitted from a Dy or B doped crystal in the detector when heated. The intensity of light emitted is dependent upon the radiation exposure. These were once sold surplus and one format once used by submariners and nuclear workers resembled a dark green wristwatch containing the active components and a highly sensitive IR wire ended diode mounted to the doped LiF2 glass chip that when the assembly is precisely heated (hence thermoluminescent) emits the stored radiation as narrow band infrared light until it is depleted [3] The main advantage is that the chip records dosage passively until exposed to light or heat so even a used sample kept in darkness can provide valuable scientific data.[4]

Legacy type[edit]

Film badge dosimeter[edit]

Film badge dosimeters are for one-time use only. The level of radiation absorption is indicated by a change to the film emulsion, which is shown when the film is developed. They are now mostly superseded by electronic personal dosimeters and thermoluminescent dosimeters.

Quartz fiber dosimeter[edit]

These use the property of a quartz fiber to measure the static electricity held on the fiber. Before use by the wearer a dosimeter is charged to a high voltage, causing the fiber to deflect due to electrostatic repulsion. As the gas in the dosimeter chamber becomes ionized by radiation the charge leaks away, causing the fiber to straighten and thereby indicate the amount of dose received against a graduated scale, which is viewed by a small in-built microscope.[5] They are only used for short durations, such as a day or a shift, as they can suffer from charge leakage, which gives a false high reading. However they are immune to EMP so were used during the Cold War as a failsafe method of determining radiation exposure.

They are now largely superseded by electronic personal dosimeters for short term monitoring.

Geiger tube dosimeter[edit]

These use a conventional Geiger-Muller tube typically a ZP1301 or similar energy compensated tube requiring between 600 and 700V and pulse detection components. The display on most was a bubble or miniature LCD type with 4 digits and a discrete counter IC such as 74C925/6, LED units usually have a button to enable the display for long battery life and an infrared emitter for count verification and calibration. The voltage is derived from a separate pinned or wire-ended module that often uses a unijunction transistor driving a small step-up coil and multiplier stage which though expensive is reliable over time and especially in high radiation environments sharing this trait with tunnel diodes though the encapsulants, inductors and capacitors have been known to break down internally over time. These have the disadvantage that the stored becquerel or microsievert count is volatile and vanishes if the power supply gets disconnected though there can be a low leakage capacitor to prevent short term battery disconnection from impact disrupting the memory. The fix is to use a long life battery, knurled high quality contacts and security screws to hold the typically glass front panel in place, though more recent units log counts versus time to a high capacity non-volatile memory such as 24C256 so it can be read out via a serial port.

Dosimetry dose quantities[edit]

The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

External radiation dose quantities used in radiological protection, based on International Commission on Radiation Units and Measurements report 57

The operational quantity for personal dosimetry is the personal dose equivalent, which is defined by the International Commission on Radiological Protection as the dose equivalent in soft tissue at an appropriate depth, below a specified point on the human body. The specified point is usually given by the position where the individual’s dosimeter is worn.[6]

Instrument and dosimeter response[edit]

This is an actual reading obtained from such as an ambient dose gamma monitor, or a personal dosimeter. The dosimeter is calibrated in a known radiation field to ensure display of accurate operational quantities and allow a relationship to known health effect. The personal dose equivalent is used to assess dose uptake, and allow regulatory limits to be met. It is the figure usually entered into the records of external dose for occupational radiation workers.

The dosimeter plays an important role within the international radiation protection system developed by the International Commission on Radiological Protection and the International Commission on Radiation Units and Measurements. This is shown in the accompanying diagram.

Dosimeter calibration[edit]

The "slab" phantom is used to represent the human torso for calibration of whole body dosimeters. This replicates the radiation scattering and absorption effects of the human torso. The International Atomic Energy Agency states "The slab phantom is 300 mm × 300 mm × 150 mm depth to represent the human torso".[7]

[edit]

Ionizing radiation related quantities view  talk  edit
QuantityUnitSymbolDerivationYearSI equivalence
Activity (A) becquerel Bq s−1 1974 SI unit
curie Ci 3.7 × 1010 s−1 1953 3.7×1010 Bq
rutherford Rd 106 s−1 1946 1,000,000 Bq
Exposure (X) coulomb per kilogram C/kg C⋅kg−1 of air 1974 SI unit
röntgen R esu / 0.001293 g of air 1928 2.58 × 10−4 C/kg
Absorbed dose (D) gray Gy J⋅kg−1 1974 SI unit
erg per gram erg/g erg⋅g−1 1950 1.0 × 10−4 Gy
rad rad 100 erg⋅g−1 1953 0.010 Gy
Equivalent dose (H) sievert Sv J⋅kg−1 × WR 1977 SI unit
röntgen equivalent man rem 100 erg⋅g−1 x WR 1971 0.010 Sv
Effective dose (E) sievert Sv J⋅kg−1 × WR × WT 1977 SI unit
röntgen equivalent man rem 100 erg⋅g−1 × WR × WT 1971 0.010 Sv

Process irradiation verification[edit]

Manufacturing processes that treat products with ionizing radiation, such as food irradiation, use dosimeters to calibrate doses deposited in the matter being irradiated. These usually must have a greater dose range than personal dosimeters, and doses are normally measured in the unit of absorbed dose: the gray (Gy). The dosimeter is located on or adjacent to the items being irradiated during the process as a validation of dose levels received.

  • The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

    Quartz-fiber dosimeter – now largely superseded

  • The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

    View of quartz fiber dosimeter reading

  • The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

    Russian Sosna radiometer-dosimeter (Front view),

  • The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

    Russian Sosna radiometer-dosimeter (Rear view)

  • The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

    Ukrainian Terra-P dosimeter

  • The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

    Russian Radex RD1503

  • The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

    Soeks 01M

  • The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

    Swiss dosimeter SA-05A

See also[edit]

  • Comparison of dosimeters
  • Geiger counter
  • Ionisation chamber
  • Operational instruments of the Royal Observer Corps
  • Scintillation counter

References[edit]

  1. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2015-04-10. Retrieved 2015-04-04.{{cite web}}: CS1 maint: archived copy as title (link)
  2. ^ Senthil Srinivasan, V.S.; Pandya, Arun (2011). "Dosimetry aspects of hafnium oxide metal-oxide-semiconductor (MOS) capacitor". Thin Solid Films. 520 (1): 574–577. Bibcode:2011TSF...520..574S. doi:10.1016/j.tsf.2011.07.010.
  3. ^ Worton, R. G.; Holloway, A. F. (1966). "Lithium Fluoride Thermoluminescence Dosimetry". Radiology. 87 (5): 938–943. doi:10.1148/87.5.938. PMID 5924913.
  4. ^ "Method of preparing a thermoluminescent phosphor".
  5. ^ Frame, Paul (2007-07-25). "Pocket Chambers and Pocket Dosimeters". ORAU Museum of Radiation and Radioactivity. Oak Ridge Associated Universities. Retrieved 2021-10-07.
  6. ^ International Commission on Radiological Protection pub 103 glossary.
  7. ^ International Atomic Energy Agency safety report 16

The type of personnel monitor that utilizes lithium fluoride being heated is called a/an

Wikimedia Commons has media related to Dosimeters.

  • A photographic list of radiation dosimeters
  • Space Radiation Dosimetry: Lessons Learned and Recommendations

What type of personnel dosimeter is used as a secondary monitor when performing procedures that require hands to be in or near the primary beam?

A thermoluminescent dosimeter (TLD) ring badge is worn as a second monitor when performing radiographic procedures that require the hands to be near the primary x-ray beam.

What are dosimeters used for quizlet?

What is a DOSIMETER? Instrument used to measure radiation exposure from x-rays.

What is the purpose of personnel monitoring?

The purpose of personnel monitoring is to provide early notice if your exposure is not below the limits and ALARA. The monitoring program also provides a permanent record of your exposure.

What unit is used to describe ionization in air?

The roentgen (R) unit refers to the amount of ionization present in the air. One roentgen of gamma- or x-ray exposure produces approximately 1 rad (0.01 gray) tissue dose (see next section for definitions of gray (Gy) and rad units of dose).