A recent research review concluded that sleep is vital to the consolidation of

  • PDFView PDF

A recent research review concluded that sleep is vital to the consolidation of

A recent research review concluded that sleep is vital to the consolidation of

Under a Creative Commons license

Open access

Highlights

A review of the relationship between distinct sleep outcomes and spontaneous thoughts.

The first systematic review of associations between sleep and spontaneous thought.

Disturbed sleep was related to higher frequencies of disruptive spontaneous thoughts.

Disturbed sleep appeared unrelated to positive-constructive daydreaming.

Findings add to the understanding of different kinds of spontaneous cognition.

Abstract

Despite an upsurge of research on spontaneous cognition, little is known about its associations with sleep-related outcomes. This systematic review, following PRISMA guidelines, examined the relationship between sleep and spontaneous thoughts, across different definitions and measurements of sleep outcomes and spontaneous cognition, and a diversity of methodologies. Twenty-one articles with survey and/or experimental designs were identified. Self-reported disturbed sleep—comprising poor sleep quality, more insomnia symptoms, more daytime sleepiness and a tendency towards eveningness—and experimentally induced sleep deprivation were associated with a tendency to engage in disruptive mind wandering and daydreaming, but not positive-constructive daydreaming. Findings regarding circadian fluctuation in spontaneous thoughts were mixed and inconclusive. This systematic review bridges the gap between the sleep and spontaneous cognition research by contributing to the understanding of potential psychological and cognitive mechanisms of spontaneous cognition, as well as by elucidating the emotional and cognitive consequences of disturbed sleep.

Keywords

Disturbed sleep

Circadian rhythms

Mind wandering

Daydreaming

Involuntary memories

Abbreviations

ST

Spontaneous thoughts (use interchangeably with Spontaneous Cognition)

Sleep->ST

Sleep related to spontaneous thoughts (no causality)

TUITs

Task-unrelated images and thoughts

TUTs

Task-unrelated thoughts

Cited by (0)

© 2022 The Authors. Published by Elsevier Inc.

  • PDFView PDF

A recent research review concluded that sleep is vital to the consolidation of

A recent research review concluded that sleep is vital to the consolidation of

Under a Creative Commons license

Open access

Highlights

Sleep and academic performance have a complex relationship.

Chronotypes influence when we sleep.

Early social schedules have a negative impact of academic performance.

This may especially affect young males, since they have the latest chronotype.

Evidence has shown that sleep plays a key role in cognitive functioning, and here the specific importance for memory consolidation in the context of academic performance is discussed. As school years are also a turning point into defining one’s chronotype and general sleep habits, it is vital that schools and universities offer a flexible structure for students to be able to develop healthy sleep practices allowing for the very much needed space for memory consolidation.

Cited by (0)

© 2019 The Author(s). Published by Elsevier Ltd.

1. Abel M, Bäuml KT. Retrieval-induced forgetting, delay, and sleep. Memory 20: 420–428, 2012 [PubMed] [Google Scholar]

2. Abel M, Bäuml KT. Sleep can eliminate list-method directed forgetting. J Exp Psychol Learn Mem Cogn 2012 [PubMed] [Google Scholar]

3. Abraham WC, Robins A. Memory retention: the synaptic stability versus plasticity dilemma. Trends Neurosci 28: 73–78, 2005 [PubMed] [Google Scholar]

4. Abraham WC, Williams JM. LTP maintenance and its protein synthesis-dependence. Neurobiol Learn Mem 89: 260–268, 2008 [PubMed] [Google Scholar]

5. Achermann P. The two-process model of sleep regulation revisited. Aviat Space Environ Med 75: A37–43, 2004 [PubMed] [Google Scholar]

6. Achermann P, Borbély AA. Low-frequency (1 Hz) oscillations in the human sleep electroencephalogram. Neuroscience 81: 213–222, 1997 [PubMed] [Google Scholar]

7. Achermann P, Borbély AA. Temporal evolution of coherence and power in the human sleep electroencephalogram. J Sleep Res 7 Suppl 1: 36–41, 1998 [PubMed] [Google Scholar]

8. Achermann P, Borbély AA. Mathematical models of sleep regulation. Front Biosci 8: s683–s93, 2003 [PubMed] [Google Scholar]

9. Adamantidis A, Carter MC, Lecea de L. Optogenetic deconstruction of sleep-wake circuitry in the brain. Front Mol Neurosci 2: 31, 2010 [PMC free article] [PubMed] [Google Scholar]

10. Aeschbach D, Cutler AJ, Ronda JM. A role for non-rapid-eye-movement sleep homeostasis in perceptual learning. J Neurosci 28: 2766–2772, 2008 [PMC free article] [PubMed] [Google Scholar]

11. Aeschbach Borbély. All-night dynamics of the human sleep EEG. J Sleep Res 2: 70–81, 1993 [PubMed] [Google Scholar]

12. Aguiar CL, Romcy-Pereira RN, Szawka RE, Galvis-Alonso OY, Anselmo-Franci JA, Leite JP. Muscarinic acetylcholine neurotransmission enhances the late-phase of long-term potentiation in the hippocampal-prefrontal cortex pathway of rats in vivo: a possible involvement of monoaminergic systems. Neuroscience 153: 1309–1319, 2008 [PubMed] [Google Scholar]

13. Ahmed R, Gray D. Immunological memory and protective immunity: understanding their relation. Science 272: 54–60, 1996 [PubMed] [Google Scholar]

14. Alberini CM. Mechanisms of memory stabilization: are consolidation and reconsolidation similar or distinct processes? Trends Neurosci 28: 51–56, 2005 [PubMed] [Google Scholar]

15. Albert I, Cicala GA, Siegel J. The behavioral effects of REM sleep deprivation in rats. Psychophysiology 6: 550–560, 1970 [PubMed] [Google Scholar]

16. Albouy G, Sterpenich V, Balteau E, Vandewalle G, Desseilles M, Dang-Vu T, Darsaud A, Ruby P, Luppi P, Degueldre C, Peigneux P, Luxen A, Maquet P. Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron 58: 261–272, 2008 [PubMed] [Google Scholar]

17. Alger SE, Lau H, Fishbein W. Delayed onset of a daytime nap facilitates retention of declarative memory. PLoS One 5: e12131, 2010 [PMC free article] [PubMed] [Google Scholar]

18. Alger SE, Lau H, Fishbein W. Slow wave sleep during a daytime nap is necessary for protection from subsequent interference and long-term retention. Neurobiol Learn Mem 98: 188–196, 2012 [PubMed] [Google Scholar]

19. Allen RP, Wagman AM. Do sleep patterns relate to the desire for alcohol? Adv Exp Med Biol 59: 495–508, 1975 [PubMed] [Google Scholar]

20. Allen SR, Oswald I, Lewis S, Tagney J. The effects of distorted visual input on sleep. Psychophysiology 9: 498–504, 1972 [PubMed] [Google Scholar]

21. Aly M, Moscovitch M. The effects of sleep on episodic memory in older and younger adults. Memory 18: 327–334, 2010 [PubMed] [Google Scholar]

22. Amado-Boccara I, Gougoulis N, Poirier Littre MF, Galinowski A, Loo H. Effects of antidepressants on cognitive functions: a review. Neurosci Biobehav Rev 19: 479–493, 1995 [PubMed] [Google Scholar]

23. Ambrosini MV, Giuditta A. Learning and sleep: the sequential hypothesis. Sleep Med Rev 5: 477–490, 2001 [PubMed] [Google Scholar]

24. Ambrosini MV, Langella M, Gironi Carnevale UA, Giuditta A. The sequential hypothesis of sleep function. III. The structure of postacquisition sleep in learning and nonlearning rats. Physiol Behav 51: 217–226, 1992 [PubMed] [Google Scholar]

25. Ambrosini MV, Mariucci G, Bruschelli G, Colarieti L, Giuditta A. Sequential hypothesis of sleep function. V. Lengthening of post-trial SS episodes in reminiscent rats. Physiol Genomics 58: 1043–1049, 1995 [PubMed] [Google Scholar]

26. Ambrosini MV, Mariucci G, Colarieti L, Bruschelli G, Carobi C, Giuditta A. The structure of sleep is related to the learning ability of rats. Eur J Neurosci 5: 269–275, 1993 [PubMed] [Google Scholar]

27. Ambrosini MV, Sadile AG, Gironi Carnevale UA, Mattiaccio A, Giuditta A. The sequential hypothesis on sleep function. II. A correlative study between sleep variables and newly synthesized brain DNA. Physiol Behav 43: 339–350, 1988 [PubMed] [Google Scholar]

28. Ambrosini MV, Sadile AG, Gironi Carnevale UA, Mattiaccio M, Giuditta A. The sequential hypothesis on sleep function. I. Evidence that the structure of sleep depends on the nature of the previous waking experience. Physiol Behav 43: 325–337, 1988 [PubMed] [Google Scholar]

29. Ambrosius U, Lietzenmaier S, Wehrle R, Wichniak A, Kalus S, Winkelmann J, Bettecken T, Holsboer F, Yassouridis A, Friess E. Heritability of sleep electroencephalogram. Biol Psychiatry 64: 344–348, 2008 [PubMed] [Google Scholar]

30. Amzica F, Massimini M. Glial and neuronal interactions during slow wave and paroxysmal activities in the neocortex. Cereb Cortex 12: 1101–1113, 2002 [PubMed] [Google Scholar]

31. Amzica F, Massimini M, Manfridi A. Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo. J Neurosci 22: 1042–1053, 2002 [PMC free article] [PubMed] [Google Scholar]

32. Amzica F, Steriade M. Short- and long-range neuronal synchronization of the slow (1 Hz) cortical oscillation. J Neurophysiol 73: 20–38, 1995 [PubMed] [Google Scholar]

33. Amzica F, Steriade M. Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysioll 107: 69–83, 1998 [PubMed] [Google Scholar]

34. Anderer P, Klösch G, Gruber G, Trenker E, Pascual-Marqui RD, Zeitlhofer J, Barbanoj MJ, Rappelsberger P, Saletu B. Low-resolution brain electromagnetic tomography revealed simultaneously active frontal and parietal sleep spindle sources in the human cortex. Neuroscience 103: 581–592, 2001 [PubMed] [Google Scholar]

35. Anderson MP, Mochizuki T, Xie J, Fischler W, Manger JP, Talley EM, Scammell TE, Tonegawa S. Thalamic Ca(v)3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc Natl Acad Sci USA 102: 1743–1748, 2005 [PMC free article] [PubMed] [Google Scholar]

36. Andrade KC, Spoormaker VI, Dresler M, Wehrle R, Holsboer F, Sämann PG, Czisch M. Sleep spindles and hippocampal functional connectivity in human NREM sleep. J Neurosci 31: 10331–10339, 2011 [PMC free article] [PubMed] [Google Scholar]

37. Andretic R, Franken P, Tafti M. Genetics of sleep. Annu Rev Genet 42: 361–388, 2008 [PubMed] [Google Scholar]

38. Andrillon T, Nir Y, Staba RJ, Ferrarelli F, Cirelli C, Tononi G, Fried I. Sleep spindles in humans: insights from intracranial EEG and unit recordings. J Neurosci 31: 17821–17834, 2011 [PMC free article] [PubMed] [Google Scholar]

39. Antonenko D, Diekelmann S, Olsen C, Born J, Mölle M. Napping to renew learning capacity: enhanced encoding after stimulation of sleep slow oscillations. Eur J Neurosci. In press [PubMed] [Google Scholar]

40. Antony JW, Gobel EW, O'Hare JK, Reber PJ, Paller KA. Cued memory reactivation during sleep influences skill learning. Nat Neurosci 2012 [PMC free article] [PubMed] [Google Scholar]

41. Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J, Schantz von M. A length polymorphism in the circadian clock gene per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26: 413–415, 2003 [PubMed] [Google Scholar]

42. Arjona A, Sarkar DK. Are circadian rhythms the code of hypothalamic-immune communication? Insights from natural killer cells. Neurochem Res 33: 708–718, 2008 [PubMed] [Google Scholar]

43. Ashe J, Lungu OV, Basford AT, Lu X. Cortical control of motor sequences. Curr Opin Neurobiol 16: 213–221, 2006 [PubMed] [Google Scholar]

44. Astill RG, van der Heijden KB, van Ijzendoorn MH, van Someren EJW. Sleep, cognition, and behavioral problems in school-age children: a century of research meta-analyzed. Psychol Bull 138: 1109–1138, 2012 [PubMed] [Google Scholar]

45. Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, Volterra A, Franken P, Adelman JP, Lüthi A. The Ca(V)3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci USA 108: 13823–13828, 2011 [PMC free article] [PubMed] [Google Scholar]

46. Atienza M, Cantero JL. Modulatory effects of emotion and sleep on recollection and familiarity. J Sleep Res 17: 285–294, 2008 [PubMed] [Google Scholar]

47. Atienza M, Cantero JL, Stickgold R. Posttraining sleep enhances automaticity in perceptual discrimination. J Cogn Neurosci 16: 53–64, 2004 [PubMed] [Google Scholar]

48. Aton SJ, Seibt J, Dumoulin M, Jha SK, Steinmetz N, Coleman T, Naidoo N, Frank MG. Mechanisms of sleep-dependent consolidation of cortical plasticity. Neuron 61: 454–466, 2009 [PMC free article] [PubMed] [Google Scholar]

49. Axmacher N, Draguhn A, Elger CE, Fell J. Memory processes during sleep: beyond the standard consolidation theory. Cell Mol Life Sci 66: 2285–2297, 2009 [PubMed] [Google Scholar]

50. Axmacher N, Elger CE, Fell J. Ripples in the medial temporal lobe are relevant for human memory consolidation. Brain 131: 1806–1817, 2008 [PubMed] [Google Scholar]

51. Axmacher N, Helmstaedter C, Elger CE, Fell J. Enhancement of neocortical-medial temporal EEG correlations during non-REM sleep. Neural Plast 2008: 563028, 2008 [PMC free article] [PubMed] [Google Scholar]

52. Ayoub A, Mölle M, Preissl H, Born J. Grouping of MEG gamma oscillations by EEG sleep spindles. Neuroimage 59: 1491–1500, 2012 [PubMed] [Google Scholar]

53. Azumi K, Shirakawa S. Characteristics of spindle activity and their use in evaluation of hypnotics. Sleep 5: 95–105, 1982 [PubMed] [Google Scholar]

54. Bachmann V, Klein C, Bodenmann S, Schäfer N, Berger W, Brugger P, Landolt H. The BDNF Val66Met polymorphism modulates sleep intensity: EEG frequency- and state-specificity. Sleep 35: 335–344, 2012 [PMC free article] [PubMed] [Google Scholar]

55. Backhaus J, Born J, Hoeckesfeld R, Fokuhl S, Hohagen F, Junghanns K. Midlife decline in declarative memory consolidation is correlated with a decline in slow wave sleep. Learn Mem 14: 336–341, 2007 [PMC free article] [PubMed] [Google Scholar]

56. Backhaus J, Hoeckesfeld R, Born J, Hohagen F, Junghanns K. Immediate as well as delayed post learning sleep but not wakefulness enhances declarative memory consolidation in children. Neurobiol Learn Mem 89: 76–80, 2008 [PubMed] [Google Scholar]

57. Backhaus J, Junghanns K. Daytime naps improve procedural motor memory. Sleep Med 7: 508–512, 2006 [PubMed] [Google Scholar]

58. Backhaus J, Junghanns K, Born J, Hohaus K, Faasch F, Hohagen F. Impaired declarative memory consolidation during sleep in patients with primary insomnia: influence of sleep architecture and nocturnal cortisol release. Biol Psychiatry 60: 1324–1330, 2006 [PubMed] [Google Scholar]

59. Barakat M, Doyon J, Debas K, Vandewalle G, Morin A, Poirier G, Martin N, Lafortune M, Karni A, Ungerleider LG, Benali H, Carrier J. Fast and slow spindle involvement in the consolidation of a new motor sequence. Behav Brain Res 217: 117–121, 2011 [PubMed] [Google Scholar]

60. Baran B, Pace-Schott EF, Ericson C, Spencer RMC. Processing of emotional reactivity and emotional memory over sleep. J Neurosci 32: 1035–1042, 2012 [PMC free article] [PubMed] [Google Scholar]

61. Barclay NL, Eley TC, Mill J, Wong CCY, Zavos HMS, Archer SN, Gregory AM. Sleep quality and diurnal preference in a sample of young adults: associations with 5HTTLPR, PER3, and CLOCK 3111. Am J Med Genet B Neuropsychiatr Genet 156: 681–690, 2011 [PubMed] [Google Scholar]

62. Barnes DC, Chapuis J, Chaudhury D, Wilson DA. Odor fear conditioning modifies piriform cortex local field potentials both during conditioning and during post-conditioning sleep. PLoS One 6: e18130, 2011 [PMC free article] [PubMed] [Google Scholar]

63. Barrett TR, Ekstrand BR. Effect of sleep on memory III controlling for time-of-day effects. J Exp Psychol 96: 321–327, 1972 [PubMed] [Google Scholar]

64. Battaglia FP, Benchenane K, Sirota A, Pennartz CMA, Wiener SI. The hippocampus: hub of brain network communication for memory. Trends Cogn Sci 15: 310–318, 2011 [PubMed] [Google Scholar]

65. Battaglia FP, Sutherland GR, Cowen SL, McNaughton BL, Harris KD. Firing rate modulation: a simple statistical view of memory trace reactivation. Neural Netw 18: 1280–1291, 2005 [PubMed] [Google Scholar]

66. Battaglia FP, Sutherland GR, McNaughton BL. Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn Mem 11: 697–704, 2004 [PMC free article] [PubMed] [Google Scholar]

67. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Self-sustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizing GABAA receptor potentials. Nat Neurosci 2: 168–174, 1999 [PubMed] [Google Scholar]

68. Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J Neurosci 22: 8691–8704, 2002 [PMC free article] [PubMed] [Google Scholar]

69. Beaulieu I, Godbout R. Spatial learning on the Morris Water Maze Test after a short-term paradoxical sleep deprivation in the rat. Brain Cognition 43: 27–31, 2000 [PubMed] [Google Scholar]

70. Behrens CJ, van den Boom LP, Hoz de L, Friedman A, Heinemann U. Induction of sharp wave-ripple complexes in vitro and reorganization of hippocampal networks. Nat Neurosci 8: 1560–1567, 2005 [PubMed] [Google Scholar]

71. Bellina V, Huber R, Rosanova M, Mariotti M, Tononi. G, Massimini M. Cortical excitability and sleep homeostasis in humans: a TMS/hd-EEG study. J Sleep Res 17 (Suppl 1): 39, 2008 [Google Scholar]

72. Benchenane K, Khamassi M, Peyrache A, Battaglia FP, Wiener SI. Theta Band LFP Coherence Between Hippocampus And Prefrontal Cortex and Reorganization of Ensemble Cell Activity During Learning. Neuropsychobiology 58: 233, 2008 [Google Scholar]

73. Benchenane K, Peyrache A, Khamassi M, Tierney PL, Gioanni Y, Battaglia FP, Wiener SI. Coherent theta oscillations and reorganization of spike timing in the hippocampal-prefrontal network upon learning. Neuron 66: 921–936, 2010 [PubMed] [Google Scholar]

74. Benchenane K, Tiesinga PH, Battaglia FP. Oscillations in the prefrontal cortex: a gateway to memory and attention. Curr Opin Neurobiol 21: 475–485, 2011 [PubMed] [Google Scholar]

75. Bendor D, Wilson MA. Biasing the content of hippocampal replay during sleep. Nat Neurosci 15: 1439–1444, 2012 [PMC free article] [PubMed] [Google Scholar]

76. Benedict C, Dimitrov S, Marshall L, Born J. Sleep enhances serum interleukin-7 concentrations in humans. Brain Behav Immun 21: 1058–1062, 2007 [PubMed] [Google Scholar]

77. Benington JH, Frank MG. Cellular and molecular connections between sleep and synaptic plasticity. Prog Neurobiol 69: 71–101, 2003 [PubMed] [Google Scholar]

78. Benington JH, Heller HC. Restoration of brain energy: metabolism as the funtion of sleep. Prog Neurobiol 45: 347–360, 1995 [PubMed] [Google Scholar]

79. Benson K, Feinberg I. Sleep and memory: retention 8 and 24 hours after initial learning. Psychophysiology 12: 192–195, 1975 [PubMed] [Google Scholar]

80. Benson K, Feinberg I. The beneficial effect of sleep in an extended Jenkins and Dallenbach paradigm. Psychophysiology 14: 1977 [PubMed] [Google Scholar]

81. Berger M, Speckmann E, Pape HC, Gorji A. Spreading depression enhances human neocortical excitability in vitro. Cephalalgia 28: 558–562, 2008 [PubMed] [Google Scholar]

82. Berger RJ, Phillips NH. Energy conservation and sleep. Behav Brain Res 69: 65–73, 1995 [PubMed] [Google Scholar]

83. Bergmann TO, Groppa S, Seeger M, Mölle M, Marshall L, Siebner HR. Acute changes in motor cortical excitability during slow oscillatory and constant anodal transcranial direct current stimulation. J Neurophysiol 102: 2303–2311, 2009 [PubMed] [Google Scholar]

84. Bergmann TO, Mölle M, Diedrichs J, Born J, Siebner HR. Sleep spindle-related reactivation of category-specific cortical regions after learning face-scene associations. Neuroimage 59: 2733–2742, 2012 [PubMed] [Google Scholar]

85. Bergmann TO, Mölle M, Marshall L, Kaya-Yildiz L, Born J, Roman Siebner H. A local signature of LTP- and LTD-like plasticity in human NREM sleep. Eur J Neurosci 27: 2241–2249, 2008 [PubMed] [Google Scholar]

86. Berner I, Schabus M, Wienerroither T, Klimesch W. The significance of sigma neurofeedback training on sleep spindles and aspects of declarative memory. Appl Psychophysiol Biofeedback 31: 97–114, 2006 [PMC free article] [PubMed] [Google Scholar]

87. Bersagliere A, Achermann P. Slow oscillations in human non-rapid eye movement sleep electroencephalogram: effects of increased sleep pressure. J Sleep Res 19: 228–237, 2010 [PubMed] [Google Scholar]

88. Bertini M, Torre A. REM sleep and memory consolidation. In: Sleep: Physiology, Biochemistry, Psychology, Pharmacology, Clinical Implications, edited by Levin PKW. Basel: Karger, 1973 [Google Scholar]

89. Besedovsky L, Born J, Lange T. Blockade of mineralocorticoid receptors enhances naive T-helper cell counts during early sleep in humans. Brain Behav Immun 26: 1116–1121, 2012 [PubMed] [Google Scholar]

91. Bierwolf C, Struve K, Marshall L, Born J, Fehm HL. Slow wave sleep drives inhibition of pituitary-adrenal secretion in humans. J Neuroendocrinol 9: 479–484, 1997 [PubMed] [Google Scholar]

92. Binder S, Baier PC, Mölle M, Inostroza M, Born J, Marshall L. Sleep enhances memory consolidation in the hippocampus-dependent object-place recognition task in rats. Neurobiol Learn Mem 97: 213–219, 2012 [PubMed] [Google Scholar]

93. Bixler EO, Rhodes JM. Spindle activity during sleep in cultural-familial mild retardates. Psychophysiology: 212, 1968 [Google Scholar]

94. Bjorness TE, Riley BT, Tysor MK, Poe GR. REM restriction persistently alters strategy used to solve a spatial task. Learn Mem 12: 352–359, 2005 [PMC free article] [PubMed] [Google Scholar]

95. Blagrove M, Fouquet NC, Baird AL, Pace-Schott EF, Davies AC, Neuschaffer JL, Henley-Einion JA, Weidemann CT, Thome J, McNamara P, Turnbull OH. Association of salivary-assessed oxytocin and cortisol levels with time of night and sleep stage. J Neural Transm 119: 1223–1232, 2012 [PubMed] [Google Scholar]

96. Blethyn KL, Hughes SW, Tóth TI, Cope DW, Crunelli V. Neuronal basis of the slow (1 Hz) oscillation in neurons of the nucleus reticularis thalami in vitro. J Neurosci 26: 2474–2486, 2006 [PMC free article] [PubMed] [Google Scholar]

97. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–39, 1993 [PubMed] [Google Scholar]

98. Bliss TV, Goddard GV, Riives M. Reduction of long-term potentiation in the dentate gyrus of the rat following selective depletion of monoamines. J Physiol 334: 475–491, 1983 [PMC free article] [PubMed] [Google Scholar]

99. Blissitt PA. Sleep, memory, learning. J Neurosci Nurs 33: 208–215, 2001 [PubMed] [Google Scholar]

100. Bloch V, Hennevin E, Leconte P. Interaction between post-trial reticular stimulation and subsequent paradoxical sleep in memory consolidation processes. In: Neurobiology of Sleep and Memory, edited by Drucker-Colin MJ. New York: Academic, 1977, p. 255–272 [Google Scholar]

101. Bloch V, Hennevin E, Leconte P. Relationship between paradoxical sleep and memory processes. In: Brain Mechanisms in Memory and Learning: From the Single Neuron to Man, edited by Razier M. New York: Raven, 1979, p. 329–343 [Google Scholar]

102. Bobbo D, Vallortigara G, Mascetti GG. The effects of early post-hatching changes of imprinting object on the pattern of monocular/unihemispheric sleep of domestic chicks. Behav Brain Res 170: 23–28, 2006 [PubMed] [Google Scholar]

103. Bobillier P, Sakai F, Seguin S, Jouvet M. Deprivation of paradoxical sleep and in vitro cerebral protein synthesis in the rat. Life Sci: 1349–1357, 1971 [PubMed] [Google Scholar]

104. Bodenmann S, Landolt H. Effects of modafinil on the sleep EEG depend on Val158Met genotype of COMT. Sleep 33: 1027–1035, 2010 [PMC free article] [PubMed] [Google Scholar]

105. Bodenmann S, Rusterholz T, Dürr R, Stoll C, Bachmann V, Geissler E, Jaggi-Schwarz K, Landolt H. The functional Val158Met polymorphism of COMT predicts interindividual differences in brain alpha oscillations in young men. J Neurosci 29: 10855–10862, 2009 [PMC free article] [PubMed] [Google Scholar]

106. Bodizs R, Kis T, Lazar AS, Havran L, Rigo P, Clemens Z, Halasz P. Prediction of general mental ability based on neural oscillation measures of sleep. J Sleep Res 14: 285–292, 2005 [PubMed] [Google Scholar]

107. Bolhuis JJ. The development of animal behavior: from Lorenz to neural nets. Naturwissenschaften 86: 101–111, 1999 [PubMed] [Google Scholar]

108. Bolhuis JJ, Gahr M. Neural mechanisms of birdsong memory. Nat Rev Neurosci 7: 347–357, 2006 [PubMed] [Google Scholar]

109. Bollinger T, Bollinger A, Skrum L, Dimitrov S, Lange T, Solbach W. Sleep-dependent activity of T cells and regulatory T cells. Clin Exp Immunol 155: 231–238, 2009 [PMC free article] [PubMed] [Google Scholar]

110. Booth V, Poe GR. Input source and strength influences overall firing phase of model hippocampal CA1 pyramidal cells during theta: relevance to REM sleep reactivation and memory consolidation. Hippocampus 16: 161–173, 2006 [PMC free article] [PubMed] [Google Scholar]

111. Borbely AA. A two process model of sleep regulation. Hum Neurobiol 1: 195–204, 1982 [PubMed] [Google Scholar]

112. Borbély AA. From slow waves to sleep homeostasis: new perspectives. Arch Ital Biol 139: 53–61, 2001 [PubMed] [Google Scholar]

113. Borbély AA, Achermann P. Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14: 557–568, 1999 [PubMed] [Google Scholar]

114. Borbély AA, Baumann F, Brandeis D, Strauch I, Lehmann D. Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol 51: 483–495, 1981 [PubMed] [Google Scholar]

115. Borgland SL, Taha SA, Sarti F, Fields HL, Bonci A. Orexin A in the VTA is critical for the induction of synaptic plasticity and behavioral sensitization to cocaine. Neuron 49: 589–601, 2006 [PubMed] [Google Scholar]

116. Born J. Slow-wave sleep and the consolidation of long-term memory. World J Biol Psychiatry 11 Suppl 1: 16–21, 2010 [PubMed] [Google Scholar]

117. Born J, Fehm HL. Hypothalamus-pituitary-adrenal activity during human sleep: a coordinating role for the limbic hippocampal system. Exp Clin Endocr Diab 106: 153–163, 1998 [PubMed] [Google Scholar]

118. Born J, Feld GB. Sleep to upscale, sleep to downscale: balancing homeostasis and plasticity. Neuron 75: 933–935, 2012 [PubMed] [Google Scholar]

119. Born J, Gais S. REM sleep deprivation: the wrong paradigm leading to wrong conclusions. Behav Brain Sci 23: 912–913, 2000 [Google Scholar]

120. Born J, Lange T, Hansen K, Mölle M, Fehm HL. Effects of sleep and circadian rhythm on human circulating immune cells. J Immunol 158: 4454–4464, 1997 [PubMed] [Google Scholar]

121. Born J, Rasch B, Gais S. Sleep to remember. Neuroscientist 12: 410–424, 2006 [PubMed] [Google Scholar]

122. Born J, Wagner U. Memory consolidation during sleep: role of cortisol feedback. Ann NY Acad Sci 1032: 198–201, 2004 [PubMed] [Google Scholar]

123. Born J, Wagner U. Sleep, hormones, memory. Sleep Med Clinics 2: 209–224, 2007 [Google Scholar]

124. Born J, Wagner U. Sleep, hormones, memory. Obstet Gynecol Clin North Am 36: 809–829, 2009 [PubMed] [Google Scholar]

126. Borrow SJAK, Chapman K, Idzekowski CJ, Oswald I. Adolescent growth and intellectual ability in relation to sleep. Sleep Res 9: 1980 [Google Scholar]

127. Bouchard TJ. Genetic and environmental influences on adult intelligence and special mental abilities. Hum Biol 70: 257–279, 1998 [PubMed] [Google Scholar]

128. Bourtchouladze R, Abel T, Berman N, Gordon R, Lapidus K, Kandel ER. Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learn Mem 5: 365–374, 1998 [PMC free article] [PubMed] [Google Scholar]

129. Bradley P, Horn G, Bateson P. Imprinting. An electron microscopic study of chick hyperstriatum ventrale. Exp Brain Res 41: 115–120, 1981 [PubMed] [Google Scholar]

130. Bramham CR, Srebro B. Synaptic plasticity in the hippocampus is modulated by behavioral state. Brain Res 493: 74–86, 1989 [PubMed] [Google Scholar]

131. Brandenberger G, Ehrhart J, Buchheit M. Sleep stage 2: an electroencephalographic, autonomic, and hormonal duality. Sleep 28: 1535–1540, 2005 [PubMed] [Google Scholar]

132. Brandon MP, Bogaard AR, Andrews CM, Hasselmo ME. Head direction cells in the postsubiculum do not show replay of prior waking sequences during sleep. Hippocampus 22: 604–618, 2012 [PMC free article] [PubMed] [Google Scholar]

133. Brankačk J, Scheffzük C, Kukushka VI, Vyssotski AL, Tort ABL, Draguhn A. Distinct features of fast oscillations in phasic and tonic rapid eye movement sleep. J Sleep Res 2012 [PubMed] [Google Scholar]

134. Braun AR, Balkin TJ, Wesenten NJ, Carson RE, Varga M, Baldwin P, Selbie S, Belenky G, Herscovitch P. Regional cerebral blood flow throughout the sleep-wake cycle. An H2(15)O PET study. Brain 120: 1173–1197, 1997 [PubMed] [Google Scholar]

135. Brawn TP, Fenn KM, Nusbaum HC, Margoliash D. Consolidating the effects of waking and sleep on motor-sequence learning. J Neurosci 30: 13977–13982, 2010 [PMC free article] [PubMed] [Google Scholar]

136. Brawn TP, Nusbaum HC, Margoliash D. Sleep-dependent consolidation of auditory discrimination learning in adult starlings. J Neurosci 30: 609–613, 2010 [PMC free article] [PubMed] [Google Scholar]

137. Brescianini S, Volzone A, Fagnani C, Patriarca V, Grimaldi V, Lanni R, Serino L, Mastroiacovo P, Antonietta Stazi M. Genetic and environmental factors shape infant sleep patterns: a study of 18-month-old twins. Pediatrics 127: e1296–e302, 2011 [PubMed] [Google Scholar]

138. Bridoux A, Laloux C, Derambure P, Bordet R, Monaca Charley C. The acute inhibition of rapid eye movement sleep by citalopram may impair spatial learning and passive avoidance in mice. J Neural Transm 2012 [PubMed] [Google Scholar]

139. Briere ME, Forest G, Lussier I, Godbout R. Implicit verbal recall correlates positively with EEG sleep spindle activity. Sleep 23 Suppl 2: 219, 2000 [Google Scholar]

140. Brocher S, Artola A, Singer W. Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex. Brain Res 573: 27–36, 1992 [PubMed] [Google Scholar]

141. Brown H, Weighall A, Henderson LM, Gareth Gaskell M. Enhanced recognition and recall of new words in 7- and 12-year-olds following a period of offline consolidation. J Exp Child Psychol 112: 56–72, 2012 [PubMed] [Google Scholar]

142. Brown LK. Can sleep deprivation studies explain why human adults sleep? Curr Opin Pulm Med 18: 541–545, 2012 [PubMed] [Google Scholar]

143. Brown MR, Robertson EM. Inducing motor skill improvements with a declarative task. Nat Neurosci 10: 148–149, 2007 [PMC free article] [PubMed] [Google Scholar]

144. Brown MW, Horn G. Learning-related alterations in the visual responsiveness of neurons in a memory system of the chick brain. Eur J Neurosci 6: 1479–1490, 1994 [PubMed] [Google Scholar]

145. Brown R, Pang G, Husband AJ, King MG. Suppression of immunity to influenza virus infection in the respiratory tract following sleep disturbance. Reg Immunol 2: 321–325, 1989 [PubMed] [Google Scholar]

146. Brown RE, Basheer R, McKenna JT, Strecker RE, McCarley RW. Control of sleep and wakefulness. Physiol Rev 92: 1087–1187, 2012 [PMC free article] [PubMed] [Google Scholar]

147. Brown RM, Robertson EM. Off-line processing: reciprocal interactions between declarative and procedural memories. J Neurosci 27: 10468–10475, 2007 [PMC free article] [PubMed] [Google Scholar]

148. Bruni O, Ferri R, Novelli L, Terribili M, Troianiello M, Finotti E, Leuzzi V, Curatolo P. Sleep spindle activity is correlated with reading abilities in developmental dyslexia. Sleep 32: 1333–1340, 2009 [PMC free article] [PubMed] [Google Scholar]

149. Buchegger J, Fritsch R, Meier-Koll A, Riehle H. Does trampolining and anaerobic physical fitness affect sleep? Percept Mot Skills 73: 243–252, 1991 [PubMed] [Google Scholar]

150. Buchegger J, Meier-Koll A. Motor learning and ultradian sleep cycle: an electroencephalographic study of trampoliners. Percept Mot Skills 67: 635–645, 1988 [PubMed] [Google Scholar]

151. Buckelmüller J, Landolt H, Stassen HH, Achermann P. Trait-like individual differences in the human sleep electroencephalogram. Neuroscience 138: 351–356, 2006 [PubMed] [Google Scholar]

152. Burgess N, Donnett JG, O'Keefe J. The representation of space and the hippocampus in rats, robots and humans. Z Naturforsch C 53: 504–509, 1998 [PubMed] [Google Scholar]

153. Busby K, Pivik RT. Sleep patterns in children of superior intelligence. J Child Psychol Psyc 24: 587–600, 1983 [PubMed] [Google Scholar]

154. Bushey D, Huber R, Tononi G, Cirelli C. Drosophila hyperkinetic mutants have reduced sleep and impaired memory. J Neurosci 27: 5384–8393, 2007 [PMC free article] [PubMed] [Google Scholar]

155. Bushey D, Hughes KA, Tononi G, Cirelli C. Sleep, aging, and lifespan in Drosophila. BMC Neurosci 56: 2010 [PMC free article] [PubMed] [Google Scholar]

156. Bushey D, Tononi G, Cirelli C. Sleep and synaptic homeostasis: structural evidence in Drosophila. Science 332: 1576–1581, 2011 [PMC free article] [PubMed] [Google Scholar]

157. Buysse DJ, Nofzinger EA, Germain A, Meltzer CC, Wood A, Ombao H, Kupfer DJ, Moore RY. Regional brain glucose metabolism during morning and evening wakefulness in humans: preliminary findings. Sleep 27: 1245–1254, 2004 [PubMed] [Google Scholar]

158. Buzsaki G. Memory consolidation during sleep: a neurophysiological perspective. J Sleep Res 7: 17–23, 1998 [PubMed] [Google Scholar]

159. Buzsáki G. Hippocampal sharp waves: their origin and significance. Brain Res 398: 242–252, 1986 [PubMed] [Google Scholar]

160. Buzsáki G. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31: 551–570, 1989 [PubMed] [Google Scholar]

161. Buzsáki G. Theta oscillations in the hippocampus. Neuron 33: 325–340, 2002 [PubMed] [Google Scholar]

162. Buzsáki G. Rhythms of the Brain. Oxford, UK: Oxford Univ. Press, 2006 [Google Scholar]

163. Cai DJ, Mednick SA, Harrison EM, Kanady JC, Mednick SC. REM, not incubation, improves creativity by priming associative networks. Proc Natl Acad Sci USA 106: 10130–10134, 2009 [PMC free article] [PubMed] [Google Scholar]

164. Cai DJ, Rickard TC. Reconsidering the role of sleep for motor memory. Behav Neurosci 123: 1153–1157, 2009 [PubMed] [Google Scholar]

165. Cai DJ, Shuman T, Gorman MR, Sage JR, Anagnostaras SG. Sleep selectively enhances hippocampus-dependent memory in mice. Behav Neurosci 123: 713–719, 2009 [PubMed] [Google Scholar]

166. Cairney SA, Durrant SJ, Musgrove H, Lewis PA. Sleep and environmental context: interactive effects for memory. Exp Brain Res 214: 83–92, 2011 [PubMed] [Google Scholar]

167. Cajochen C, Münch M, Knoblauch V, Blatter K, Wirz-Justice A. Age-related changes in the circadian and homeostatic regulation of human sleep. Chronobiol Int 23: 461–474, 2006 [PubMed] [Google Scholar]

168. Campanella C, Hamann S. Examining the effects of post-learning sleep on consolidation of associative emotional declarative memories. Poster at the 2011 Annual Meeting of Cognitive Neuroscience Society San Francisco, CA: Cognitive Neuroscience Soc., 2011 [Google Scholar]

169. Campbell IG, Feinberg I. Longitudinal trajectories of non-rapid eye movement delta and theta EEG as indicators of adolescent brain maturation. Proc Natl Acad Sci USA 106: 5177–5180, 2009 [PMC free article] [PubMed] [Google Scholar]

170. Campbell IG, Guinan MJ, Horowitz JM. Sleep deprivation impairs long term potentiation in rat hippocampal slices. Sleep 25: A134–A135, 2002 [Google Scholar]

171. Campbell IG, Higgins LM, Darchia N, Feinberg I. Homeostatic behavior of fast Fourier transform power in very low frequency non-rapid eye movement human electroencephalogram. Neuroscience 140: 1395–1399, 2006 [PubMed] [Google Scholar]

172. Cano P, Cardinali DP, Ríos-Lugo MJ, Fernández-Mateos MP, Reyes Toso CF, Esquifino AI. Effect of a high-fat diet on 24-hour pattern of circulating adipocytokines in rats. Obesity 17: 1866–1871, 2009 [PubMed] [Google Scholar]

173. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, Berger MS, Barbaro NM, Knight RT. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313: 1626–1628, 2006 [PMC free article] [PubMed] [Google Scholar]

174. Cantero JL, Atienza M, Stickgold R, Kahana MJ, Madsen JR, Kocsis B. Sleep-dependent theta oscillations in the human hippocampus and neocortex. J Neurosci 23: 10897–10903, 2003 [PMC free article] [PubMed] [Google Scholar]

175. Carr MF, Jadhav SP, Frank LM. Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci 14: 147–153, 2011 [PMC free article] [PubMed] [Google Scholar]

176. Carrier J, Land S, Buysse DJ, Kupfer DJ, Monk TH. The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20–60 years old). Psychophysiology 38: 232–242, 2001 [PubMed] [Google Scholar]

177. Carrier J, Viens I, Poirier G, Robillard R, Lafortune M, Vandewalle G, Martin N, Barakat M, Paquet J, Filipini D. Sleep slow wave changes during the middle years of life. Eur J Neurosci 33: 758–766, 2011 [PubMed] [Google Scholar]

178. Carskadon MA, Herz RS. Minimal olfactory perception during sleep: why odor alarms will not work for humans. Sleep 27: 402–405, 2004 [PubMed] [Google Scholar]

179. Cartwright RD, Lloyd S, Butters E, Weiner L, McCarthy L, Hancock J. Effects of REM time on what is recalled. Psychophysiology 12: 561–568, 1975 [PubMed] [Google Scholar]

180. Casey BJ, Tottenham N, Listen C, Durston S. Imaging the developing brain: what have we learned about cognitive development? Trends Cogn Sci 9: 104–110, 2005 [PubMed] [Google Scholar]

181. Cash SS, Halgren E, Dehghani N, Rossetti AO, Thesen T, Wang C, Devinsky O, Kuzniecky R, Doyle W, Madsen JR, Bromfield E, Eross L, Halász P, Karmos G, Csercsa R, Wittner L, Ulbert I. The human K-complex represents an isolated cortical down-state. Science 324: 1084–1087, 2009 [PMC free article] [PubMed] [Google Scholar]

182. Castaldo V. Down's syndrome: a study of sleep patterns related to level of mental retardation. Am J Ment Defic 187–190, 1969 [PubMed] [Google Scholar]

183. Castaldo V, Krynicki V. Sleep pattern and intelligence in functional mental retardation. J Ment Defic Res 17: 231–235, 1973 [PubMed] [Google Scholar]

184. Castaldo V, Krynicki V. Sleep and eye movement patterns in two groups of retardates. Biol Psychiatry 9: 231–244, 1974 [PubMed] [Google Scholar]

185. Castaldo V, Krynicki V, Goldstein J. Sleep stages and verbal memory. Percept Mot Skills 39: 1023–1030, 1974 [Google Scholar]

186. Castro de JM. The influence of heredity on self-reported sleep patterns in free-living humans. Physiol Behav 76: 479–486, 2002 [PubMed] [Google Scholar]

187. Chauvette S, Seigneur J, Timofeev I. Sleep oscillations in the thalamocortical system induce long-term neuronal plasticity. Neuron 75: 1105–1113, 2012 [PMC free article] [PubMed] [Google Scholar]

188. Chauvette S, Volgushev M, Timofeev I. Origin of active states in local neocortical networks during slow sleep oscillation. Cereb Cortex 20: 2660–2674, 2010 [PMC free article] [PubMed] [Google Scholar]

189. Chee MWL, Chuah LYM. Functional neuroimaging insights into how sleep and sleep deprivation affect memory and cognition. Curr Opin Neurol 21: 417–423, 2008 [PubMed] [Google Scholar]

190. Chen J, Chauvette S, Skorheim S, Timofeev I, Bazhenov M. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation. J Physiol 2012 [PMC free article] [PubMed] [Google Scholar]

191. Cheng S, Frank LM. New experiences enhance coordinated neural activity in the hippocampus. Neuron 57: 303–313, 2008 [PMC free article] [PubMed] [Google Scholar]

192. Chernik DA. Effect of REM sleep deprivation on learning and recall by humans. Percept Mot Skills: 283–294, 1972 [PubMed] [Google Scholar]

193. Chikanza IC. Prolactin and neuroimmunomodulation: In vitro and in vivo observations. Ann NY Acad Sci 876: 119–130, 1999 [PubMed] [Google Scholar]

194. Chorover S. An experimental critique of the “consolidation studies” and an alternative “model-systems” approach to the biophysiology of memory. In: Neural Mechanisms of Learning and Memory, edited by Rosenzweig M, Bennett EL. Cambridge, MA: MIT Press, 1976, p. 561–582 [Google Scholar]

195. Chowdhury A, Chandra R, Jha SK. Total sleep deprivation impairs the encoding of trace-conditioned memory in the rat. Neurobiol Learn Mem 95: 355–360, 2011 [PubMed] [Google Scholar]

196. Chrobak JJ, Buzsáki G. High-frequency oscillations in the output networks of the hippocampal-entorhinal axis of the freely behaving rat. J Neurosci 16: 3056–3066, 1996 [PMC free article] [PubMed] [Google Scholar]

197. Chu S, Downes JJ. Proust nose best: odors are better cues of autobiographical memory. Mem Cognit 30: 511–518, 2002 [PubMed] [Google Scholar]

198. Chun MM, Phelps EA. Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nat Neurosci 2: 844–847, 1999 [PubMed] [Google Scholar]

199. Cipolli C. Symposium: cognitive processes and sleep disturbances: sleep, dreams and memory: an overview. J Sleep Res 4: 2–9, 1995 [PubMed] [Google Scholar]

200. Cipolli C, Mazzetti M, Plazzi G. Sleep-dependent memory consolidation in patients with sleep disorders. Sleep Med Rev 2012 [PubMed] [Google Scholar]

201. Cirelli C. A molecular window on sleep: changes in gene expression between sleep and wakefulness. Neuroscientist 11: 63–74, 2005 [PubMed] [Google Scholar]

202. Cirelli C. The genetic and molecular regulation of sleep: from fruit flies to humans. Nat Rev Neurosci 10: 549–560, 2009 [PMC free article] [PubMed] [Google Scholar]

203. Cirelli C, Bushey D, Hill S, Huber R, Kreber R, Ganetzky B, Tononi G. Reduced sleep in Drosophila shaker mutants. Nature 434: 1087–1092, 2005 [PubMed] [Google Scholar]

204. Cirelli C, Gutierrez CM, Tononi G. Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41: 35–43, 2004 [PubMed] [Google Scholar]

205. Cirelli C, Huber R, Gopalakrishnan A, Southard TL, Tononi G. Locus ceruleus control of slow-wave homeostasis. J Neurosci 25: 4503–4511, 2005 [PMC free article] [PubMed] [Google Scholar]

206. Cirelli C, Pompeiano M, Arrighi P, Tononi G. Sleep-waking changes after c-fos antisense injections in the medial preoptic area. Neuroreport 6: 801–805, 1995 [PubMed] [Google Scholar]

207. Cirelli C, Tononi G. Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J Neurosci 20: 9187–9194, 2000 [PMC free article] [PubMed] [Google Scholar]

208. Cirelli C, Tononi G. Locus ceruleus control of state-dependent gene expression. J Neurosci 24: 5410–5419, 2004 [PMC free article] [PubMed] [Google Scholar]

210. Clark J, Rafelski JV, Winston J. Brain without mind: computer-simulation of neural networks with modifiable neuronal interations. Phys Rep 123: 215–273, 1985 [Google Scholar]

211. Clausen J, Sersen EA, Lidsky A. Sleep patterns in mental retardation: Down's syndrome. Electroencephalogr Clin Neurophysiol 43: 183–191, 1977 [PubMed] [Google Scholar]

212. Claustrat B, Brun J, Chazot G. The basic physiology and pathophysiology of melatonin. Sleep Med Rev 9: 11–24, 2005 [PubMed] [Google Scholar]

213. Clemens Z, Fabó D, Halász P. Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience 132: 529–535, 2005 [PubMed] [Google Scholar]

214. Clemens Z, Fabó D, Halász P. Twenty-four hours retention of visuospatial memory correlates with the number of parietal sleep spindles. Neurosci Lett 403: 52–56, 2006 [PubMed] [Google Scholar]

215. Clemens Z, Mölle M, Eross L, Barsi P, Halász P, Born J. Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans. Brain 130: 2868–2878, 2007 [PubMed] [Google Scholar]

216. Clemens Z, Mölle M, Eross L, Jakus R, Rásonyi G, Halász P, Born J. Fine-tuned coupling between human parahippocampal ripples and sleep spindles. Eur J Neurosci 33: 511–520, 2011 [PubMed] [Google Scholar]

217. Clevenger CV, Altmann SW, Prystowsky MB. Requirement of nuclear prolactin for interleukin-2-stimulated proliferation of T lymphocytes. Science 253: 77–79, 1991 [PubMed] [Google Scholar]

218. Cohen DA, Pascual-Leone A, Press DZ, Robertson EM. Off-line learning of motor skill memory: a double dissociation of goal and movement. Proc Natl Acad Sci USA 102: 18237–18241, 2005 [PMC free article] [PubMed] [Google Scholar]

219. Cohen JD, O'Reilly RC. A preliminary theory of the interactions between prefrontal cortex and hippocampus that contribute to planning and prospective memory. In: Prospective Memory: Theory and Applications, edited by Brandimonte M, Einstein G, McDaniel MA. Mahwah, NJ: Lawrence Erlbaum Assoc., 1996, p. 267–296 [Google Scholar]

220. Colgin LL. Oscillations and hippocampal-prefrontal synchrony. Curr Opin Neurobiol 21: 467–474, 2011 [PMC free article] [PubMed] [Google Scholar]

221. Collet G, Schmitz R, Urbain C, Leybaert J, Colin C, Peigneux P. Sleep may not benefit learning new phonological categories. Front Neurol 3: 97, 2012 [PMC free article] [PubMed] [Google Scholar]

222. Collingridge GL, Peineau S, Howland JG, Wang YT. Long-term depression in the CNS. Nat Rev Neurosci 11: 459–473, 2010 [PubMed] [Google Scholar]

223. Collins DR, Davies SN. Melatonin blocks the induction of long-term potentiation in an N-methyl-d-aspartate independent manner. Brain Res 767: 162–165, 1997 [PubMed] [Google Scholar]

224. Compte A, Reig R, Descalzo VF, Harvey MA, Puccini GD, Sanchez-Vives MV. Spontaneous high-frequency (10–80 Hz) oscillations during up states in the cerebral cortex in vitro. J Neurosci 28: 13828–13844, 2008 [PMC free article] [PubMed] [Google Scholar]

225. Connors BW, Malenka RC, Silva LR. Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. J Physiol 406: 443–468, 1988 [PMC free article] [PubMed] [Google Scholar]

226. Conte F, Ficca G. Caveats on psychological models of sleep and memory: a compass in an overgrown scenario. Sleep Med Rev 2012 [PubMed] [Google Scholar]

227. Contreras D, Destexhe A, Sejnowski TJ, Steriade M. Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274: 771–774, 1996 [PubMed] [Google Scholar]

228. Contreras D, Steriade M. State-dependent fluctuations of low-frequency rhythms in corticothalamic networks. Neuroscience 76: 25–38, 1997 [PubMed] [Google Scholar]

229. Contreras D, Timofeev I, Steriade M. Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. J Physiol 494: 251–264, 1996 [PMC free article] [PubMed] [Google Scholar]

230. Conway J, Smith C. REM sleep and learning in humans: a sensitivity to specific types of learning tasks. Proceedings of the 12th Congress of the European Sleep Research Society , 1994 [Google Scholar]

231. Corkin S. What's new with the amnesic patient HM? Nat Rev Neurosci 3: 153–160, 2002 [PubMed] [Google Scholar]

232. Corsi-Cabrera M, Becker J, García L, Ibarra R, Morales M, Souza M. Dream content after using visual inverting prisms. Percept Mot Skills 63: 415–423, 1986 [PubMed] [Google Scholar]

233. Costenla AR, Cunha RA, de MA. Caffeine, adenosine receptors, and synaptic plasticity. J Alzheimers Dis 20 Suppl 1: S25, 2010 [PubMed] [Google Scholar]

234. Cox JH, Ford WL. The migration of lymphocytes across specialized vascular endothelium. IV. Prednisolone acts at several points on the recirculation pathways of lymphocytes. Cell Immunol 66: 407–422, 1982 [PubMed] [Google Scholar]

235. Cox R, Hofman WF, Talamini LM. Involvement of spindles in memory consolidation is slow wave sleep-specific. Learn Mem 19: 264–267, 2012 [PubMed] [Google Scholar]

236. Crick F, Mitchison G. The function of dream sleep. Nature 304: 111–114, 1983 [PubMed] [Google Scholar]

237. Crick F, Mitchison G. REM sleep and neural nets. Behav Brain Res 69: 147–155, 1995 [PubMed] [Google Scholar]

238. Crochet S, Chauvette S, Boucetta S, Timofeev I. Modulation of synaptic transmission in neocortex by network activities. Eur J Neurosci 21: 1030–1044, 2005 [PubMed] [Google Scholar]

239. Crunelli V, Hughes SW. The slow (<1 Hz) rhythm of non-REM sleep: a dialogue between three cardinal oscillators. Nat Neurosci 13: 9–17, 2010 [PMC free article] [PubMed] [Google Scholar]

240. Csercsa R, Dombovari B, Fabo D, Wittner L, Eross L, Entz L, Solyom A, Rasonyi G, Szucs A, Kelemen A, Jakus R, Juhos V, Grand L, Magony A, Halasz P, Freund TF, Magloczky Z, Cash SS, Pappo L, Karmos G, Halgren E, Ulbert I. Laminar analysis of slow wave activity in humans. Brain 133: 2814–2829, 2010 [PMC free article] [PubMed] [Google Scholar]

241. Csicsvari J, Hirase H, Czurkó A, Mamiya A, Buzsáki G. Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving Rat. J Neurosci 19: 274–287, 1999 [PMC free article] [PubMed] [Google Scholar]

242. Csicsvari J, Jamieson B, Wise KD, Buzsaki G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 37: 311–322, 2003 [PubMed] [Google Scholar]

243. Csicsvari J, O'Neill J, Allen K, Senior T. Place-selective firing contributes to the reverse-order reactivation of CA1 pyramidal cells during sharp waves in open-field exploration. Eur J Neurosci 26: 704–716, 2007 [PMC free article] [PubMed] [Google Scholar]

244. Cueni L, Canepari M, Luján R, Emmenegger Y, Watanabe M, Bond CT, Franken P, Adelman JP, Lüthi A. T-type Ca2+ channels, SK2 channels and SERCAs gate sleep-related oscillations in thalamic dendrites. Nat Neurosci 11: 683–692, 2008 [PubMed] [Google Scholar]

245. Cunha RA. Regulation of the ecto-nucleotidase pathway in rat hippocampal nerve terminals. Neurochem Res 26: 979–991, 2001 [PubMed] [Google Scholar]

246. Curcio G, Ferrara M, Gennaro de L. Sleep loss, learning capacity and academic performance. Sleep Med Rev 10: 323–337, 2006 [PubMed] [Google Scholar]

247. Curran HV. Benzodiazepines, memory and mood: a review. Psychopharmacology 105: 1–8, 1991 [PubMed] [Google Scholar]

248. Dahl A. Über den Einfluss des Schlafs auf das Wiedererkennen. Psychol Forsch 11: 290–301, 1928 [Google Scholar]

249. Danguir J, Nicolaidis S. Impairments of learned aversion acquisition following paraodixcal sleep deprivation in the rat. Physiol Behav 17: 489–492, 1976 [PubMed] [Google Scholar]

250. Dang-Vu TT, Desseilles M, Laureys S, Degueldre C, Perrin F, Phillips C, Maquet P, Peigneux P. Cerebral correlates of delta waves during non-REM sleep revisited. Neuroimage 28: 14–21, 2005 [PubMed] [Google Scholar]

251. Dang-Vu TT, Desseilles M, Peigneux P, Maquet P. A role for sleep in brain plasticity. Pediatr Rehabil 9: 98–118, 2006 [PubMed] [Google Scholar]

252. Dang-Vu TT, Schabus M, Desseilles M, Albouy G, Boly M, Darsaud A, Gais S, Rauchs G, Sterpenich V, Vandewalle G, Carrier J, Moonen G, Balteau E, Degueldre C, Luxen A, Phillips C, Maquet P. Spontaneous neural activity during human slow wave sleep. Proc Natl Acad Sci USA 105: 15160–15165, 2008 [PMC free article] [PubMed] [Google Scholar]

253. Dang-Vu TT, Schabus M, Desseilles M, Sterpenich V, Bonjean M, Maquet P. Functional neuroimaging insights into the physiology of human sleep. Sleep 33: 1589–1603, 2010 [PMC free article] [PubMed] [Google Scholar]

254. Darchia N, Campbell IG, Feinberg I. Rapid eye movement density is reduced in the normal elderly. Sleep 26: 973–977, 2003 [PubMed] [Google Scholar]

255. Darsaud A, Dehon H, Lahl O, Sterpenich V, Boly M, Dang-Vu T, Desseilles M, Gais S, Matarazzo L, Peters F, Schabus M, Schmidt C, Tinguely G, Vandewalle G, Luxen A, Maquet P, Collette F. Does sleep promote false memories? J Cogn Neurosci 23: 26–40, 2011 [PubMed] [Google Scholar]

256. Darsaud A, Wagner U, Balteau E, Desseilles M, Sterpenich V, Vandewalle G, Albouy G, Dang-Vu T, Collette F, Boly M, Schabus M, Degueldre C, Luxen A, Maquet P. Neural precursors of delayed insight. J Cogn Neurosci 23: 1900–1910, 2011 [PubMed] [Google Scholar]

257. Dash MB, Douglas CL, Vyazovskiy VV, Cirelli C, Tononi G. Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J Neurosci 29: 620–629, 2009 [PMC free article] [PubMed] [Google Scholar]

258. Datta S. PGO wave generation: mechanism and functional significance. In: Rapid Eye Movement Sleep, edited by Mallick B. New Dehli: Narosa Publishing, 1999, p. 91–106 [Google Scholar]

259. Datta S. Avoidance task training potentiates phasic pontine-wave density in the rat: a mechanism for sleep-dependent plasticity. J Neurosci 20: 8607–8613, 2000 [PMC free article] [PubMed] [Google Scholar]

260. Datta S, Hobson JA. Neuronal activity in the caudolateral peribrachial pons: relationship to PGO waves and rapid eye movements. J Neurophysiol 71: 95–109, 1994 [PubMed] [Google Scholar]

261. Datta S, Li G, Auerbach S. Activation of phasic pontine-wave generator in the rat: a mechanism for expression of plasticity-related genes and proteins in the dorsal hippocampus and amygdala. Eur J Neurosci 27: 1876–1892, 2008 [PMC free article] [PubMed] [Google Scholar]

262. Datta S, Maclean RR. Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence. Neurosci Biobehav Rev 31: 775–824, 2007 [PMC free article] [PubMed] [Google Scholar]

263. Datta S, Mavanji V, Ulloor J, Patterson EH. Activation of phasic pontine-wave generator prevents rapid eye movement sleep deprivation-induced learning impairment in the rat: a mechanism for sleep-dependent plasticity. J Neurosci 24: 1416–1427, 2004 [PMC free article] [PubMed] [Google Scholar]

264. Datta S, O'Malley MW, Patterson EH. Calcium/calmodulin kinase II in the pedunculopontine tegmental nucleus modulates the initiation and maintenance of wakefulness. J Neurosci 31: 17007–17016, 2011 [PMC free article] [PubMed] [Google Scholar]

265. Daurat A, Terrier P, Foret J, Tiberge M. Slow wave sleep and recollection in recognition memory. Conscious Cogn 16: 445–455, 2007 [PubMed] [Google Scholar]

266. Dauvilliers Y, Maret S, Tafti M. Genetics of normal and pathological sleep in humans. Sleep Med Rev 9: 91–100, 2005 [PubMed] [Google Scholar]

267. Dave AS, Margoliash D. Song replay during sleep and computational rules for sensorimotor vocal learning. Science 290: 812–816, 2000 [PubMed] [Google Scholar]

268. Davidson TJ, Kloosterman F, Wilson MA. Hippocampal Replay of Extended Experience. Neuron 63: 497–507, 2009 [PMC free article] [PubMed] [Google Scholar]

269. Davis CJ, Harding JW, Wright JW. REM sleep deprivation-induced deficits in the latency-to-peak induction and maintenance of long-term potentiation within the CA1 region of the hippocampus. Brain Res 973: 293–297, 2003 [PubMed] [Google Scholar]

270. Davis CJ, Meighan PC, Taishi P, Krueger JM, Harding JW, Wright JW. REM sleep deprivation attenuates actin-binding protein cortactin: a link between sleep and hippocampal plasticity. Neurosci Lett 400: 191–196, 2006 [PubMed] [Google Scholar]

271. Day NF, Kinnischtzke AK, Adam M, Nick TA. Daily and developmental modulation of “premotor” activity in the birdsong system. Dev Neurobiol 69: 796–810, 2009 [PMC free article] [PubMed] [Google Scholar]

272. Dean T, Xu R, Joiner W, Sehgal A, Hoshi T. Drosophila QVR/SSS modulates the activation and C-type inactivation kinetics of Shaker K+ channels. J Neurosci 31: 11387–11395, 2011 [PMC free article] [PubMed] [Google Scholar]

273. Debarnot U, Castellani E, Guillot A, Giannotti V, Dimarco M, Sebastiani L. Declarative interference affects off-line processing of motor imagery learning during both sleep and wakefulness. Neurobiol Learn Mem 2012 [PubMed] [Google Scholar]

274. Debarnot U, Creveaux T, Collet C, Doyon J, Guillot A. Sleep contribution to motor memory consolidation: a motor imagery study. Sleep 32: 1559–1565, 2009 [PMC free article] [PubMed] [Google Scholar]

275. Debarnot U, Creveaux T, Collet C, Gemignani A, Massarelli R, Doyon J, Guillot A. Sleep-related improvements in motor learning following mental practice. Brain Cogn 69: 398–405, 2009 [PubMed] [Google Scholar]

276. Dehghani N, Cash SS, Rossetti AO, Chen CC, Halgren E. Magnetoencephalography demonstrates multiple asynchronous generators during human sleep spindles. J Neurophysiol 104: 179–188, 2010 [PMC free article] [PubMed] [Google Scholar]

277. del Cerro S, Jung M, Lynch G. Benzodiazepines block long-term potentiation in slices of hippocampus and piriform cortex. Neuroscience 49: 1–6, 1992 [PubMed] [Google Scholar]

278. Denenberg VH, Desantis D, Waite S, Thoman EB. The effects of handling in infancy on behavioral states in the rabbit. Physiol Behav 18: 553–557, 1977 [PubMed] [Google Scholar]

279. Derégnaucourt S, Mitra PP, Fehér O, Maul KK, Lints TJ, Tchernichovski O. Song development: in search of the error-signal. Ann NY Acad Sci 1016: 364–376, 2004 [PubMed] [Google Scholar]

280. Derégnaucourt S, Mitra PP, Fehér O, Pytte C, Tchernichovski O. How sleep affects the developmental learning of bird song. Nature 433: 710–716, 2005 [PubMed] [Google Scholar]

281. Destexhe A, Contreras D, Steriade M. Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19: 4595–4608, 1999 [PMC free article] [PubMed] [Google Scholar]

282. Destexhe A, Hughes SW, Rudolph M, Crunelli V. Are corticothalamic “up” states fragments of wakefulness? Trends Neurosci 30: 334–342, 2007 [PMC free article] [PubMed] [Google Scholar]

283. Destexhe A, Sejnowski TJ. Interactions between membrane conductances underlying thalamocortical slow-wave oscillations. Physiol Rev 83: 1401–1453, 2003 [PMC free article] [PubMed] [Google Scholar]

284. Destrade C, Hennevin E, Leconte P, Soumireu-Mourat B. Relationship between paradoxical sleep and time-dependent improvement of performance in BALB/c mice. Neurosci Lett 7: 239–244, 1978 [PubMed] [Google Scholar]

285. Devito LM, Eichenbaum H. Memory for the order of events in specific sequences: contributions of the hippocampus and medial prefrontal cortex. J Neurosci 31: 3169–3175, 2011 [PMC free article] [PubMed] [Google Scholar]

286. Dewald JF, Meijer AM, Oort FJ, Kerkhof GA, Bögels SM. The influence of sleep quality, sleep duration and sleepiness on school performance in children and adolescents: a meta-analytic review. Sleep Med Rev 14: 179–189, 2010 [PubMed] [Google Scholar]

287. Dhabhar FS. Stress-induced enhancement of cell-mediated immunity. Ann NY Acad Sci 840: 359–372, 1998 [PubMed] [Google Scholar]

288. Diba K, Buzsáki G. Forward and reverse hippocampal place-cell sequences during ripples. Nat Neurosci 10: 1241–1242, 2007 [PMC free article] [PubMed] [Google Scholar]

289. Dickstein JB, Hay JB, Eng LM, Moldofsky H. The relationship of lymphocytes in blood and in lymph to sleep/wake states in sheep. Sleep 23: 185–190, 2000 [PubMed] [Google Scholar]

290. Diekelmann S, Biggel S, Rasch B, Born J. Offline consolidation of memory varies with time in slow wave sleep and can be accelerated by cuing memory reactivations. Neurobiol Learn Mem 98: 103–111, 2012 [PubMed] [Google Scholar]

291. Diekelmann S, Born J. One memory, two ways to consolidate? Nat Neurosci 10: 1085–1086, 2007 [PubMed] [Google Scholar]

292. Diekelmann S, Born J. Slow-wave sleep takes the leading role in memory reorganization. Nat Rev Neurosci 11: 218, 2010 [Google Scholar]

293. Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci 11: 114–126, 2010 [PubMed] [Google Scholar]

294. Diekelmann S, Born J, Wagner U. Sleep enhances false memories depending on general memory performance. Behav Brain Res 208: 425–429, 2010 [PubMed] [Google Scholar]

295. Diekelmann S, Büchel C, Born J, Rasch B. Labile or stable: opposing consequences for memory when reactivated during waking and sleep. Nat Neurosci 14: 381–386, 2011 [PubMed] [Google Scholar]

296. Diekelmann S, Landolt H, Lahl O, Born J, Wagner U. Sleep loss produces false memories. PLoS One 3: e3512, 2008 [PMC free article] [PubMed] [Google Scholar]

297. Diekelmann S, Wilhelm I, Born J. The whats and whens of sleep-dependent memory consolidation. Sleep Med Rev 13: 309–321, 2009 [PubMed] [Google Scholar]

299. Dijk D, Archer SN. PERIOD3, circadian phenotypes, and sleep homeostasis. Sleep Med Rev 14: 151–160, 2010 [PubMed] [Google Scholar]

300. Dijk DJ, Beersma DG, Daan S, Bloem GM, van den Hoofdakker RH. Quantitative analysis of the effects of slow wave sleep deprivation during the first 3 h of sleep on subsequent EEG power density. Eur Arch Psychiatry Neurol Sci 236: 323–328, 1987 [PubMed] [Google Scholar]

301. Dijk DJ, Brunner DP, Beersma DG, Borbély AA. Electroencephalogram power density and slow wave sleep as a function of prior waking and circadian phase. Sleep 13: 430–440, 1990 [PubMed] [Google Scholar]

302. Dijk DJ, Brunner DP, Borbély AA. EEG power density during recovery sleep in the morning. Electroencephalogr Clin Neurophysiol 78: 203–214, 1991 [PubMed] [Google Scholar]

303. Dijk DJ, Hayes B, Czeisler CA. Dynamics of electroencephalographic sleep spindles and slow wave activity in men: effect of sleep deprivation. Brain Res 626: 190–199, 1993 [PubMed] [Google Scholar]

304. Dijk DJ, James LM, Peters S, Walsh JK, Deacon S. Sex differences and the effect of gaboxadol and zolpidem on EEG power spectra in NREM and REM sleep. J Psychopharmacol 24: 1613–1618, 2010 [PubMed] [Google Scholar]

305. Dimitrov S, Benedict C, Heutling D, Westermann J, Born J, Lange T. Cortisol and epinephrine control opposing circadian rhythms in T cell subsets. Blood 113: 5134–5143, 2009 [PMC free article] [PubMed] [Google Scholar]

306. Dimitrov S, Lange T, Born J. Selective mobilization of cytotoxic leukocytes by epinephrine. J Immunol 184: 503–511, 2010 [PubMed] [Google Scholar]

307. Dimitrov S, Lange T, Nohroudi K, Born J. Number and function of circulating human antigen presenting cells regulated by sleep. Sleep 30: 401–411, 2007 [PubMed] [Google Scholar]

308. Dimitrov S, Lange T, Tieken S, Fehm HL, Born J. Sleep associated regulation of T helper 1/T helper 2 cytokine balance in humans. Brain Behav Immun 18: 341–348, 2004 [PubMed] [Google Scholar]

309. Ding J, Gip PT, Franken P, Lomas L, O'Hara BF. A proteomic analysis in brain following sleep deprivation suggests a generalized decrease in abundance for many proteins. Sleep 27: 391–392, 2004 [Google Scholar]

310. Dionne G, Touchette E, Forget-Dubois N, Petit D, Tremblay RE, Montplaisir JY, Boivin M. Associations between sleep-wake consolidation and language development in early childhood: a longitudinal twin study. Sleep 34: 987–995, 2011 [PMC free article] [PubMed] [Google Scholar]

311. Djonlagic I, Saboisky J, Carusona A, Stickgold R, Malhotra A. Increased sleep fragmentation leads to impaired off-line consolidation of motor memories in humans. PLoS One 7: e34106, 2012 [PMC free article] [PubMed] [Google Scholar]

312. Dodge AM, Beatty WW. Sleep deprivation does not affect spatial memory in rats. Psychonomic Soc 16: 408–409, 1980 [Google Scholar]

313. Dodt C, Breckling U, Derad I, Fehm HL, Born J. Plasma epinephrine and norepinephrine concentrations of healthy humans associated with nighttime sleep and morning arousal. Hypertension 30: 71–76, 1997 [PubMed] [Google Scholar]

314. Donlea JM, Ramanan N, Shaw PJ. Use-dependent plasticity in clock neurons regulates sleep need in Drosophila. Science 324: 105–108, 2009 [PMC free article] [PubMed] [Google Scholar]

315. Donlea JM, Shaw PJ. Sleeping together using social interactions to understand the role of sleep in plasticity. Adv Genet 68: 57–81, 2009 [PMC free article] [PubMed] [Google Scholar]

316. Donlea JM, Thimgan MS, Suzuki Y, Gottschalk L, Shaw PJ. Inducing sleep by remote control facilitates memory consolidation in Drosophila. Science 332: 1571–1576, 2011 [PMC free article] [PubMed] [Google Scholar]

317. Doran S. The dynamic topography of individual sleep spindles. Sleep Res Online 5: 133–139, 2003 [Google Scholar]

318. Dorfberger S, Adi-Japha E, Karni A. Reduced susceptibility to interference in the consolidation of motor memory before adolescence. PLoS One 2: e240, 2007 [PMC free article] [PubMed] [Google Scholar]

320. Douglas CL, Vyazovskiy V, Southard T, Chiu S, Messing A, Tononi G, Cirelli C. Sleep in Kcna2 knockout mice. BMC Biol 5: 42, 2007 [PMC free article] [PubMed] [Google Scholar]

321. Doupe AJ, Kuhl PK. Birdsong and human speech: Common themes and mechanisms. Annu Rev Neurosci 567–631, 1999 [PubMed] [Google Scholar]

322. Doyon J, Korman M, Morin A, Dostie V, Hadj Tahar A, Benali H, Karni A, Ungerleider LG, Carrier J. Contribution of night and day sleep vs. simple passage of time to the consolidation of motor sequence and visuomotor adaptation learning. Exp Brain Res 195: 15–26, 2009 [PMC free article] [PubMed] [Google Scholar]

323. Dragoi G, Tonegawa S. Preplay of future place cell sequences by hippocampal cellular assemblies. Nature 469: 397–401, 2010 [PMC free article] [PubMed] [Google Scholar]

324. Drosopoulos S, Harrer D, Born J. Sleep and awareness about presence of regularity speed the transition from implicit to explicit knowledge. Biol Psychol 86: 168–173, 2011 [PubMed] [Google Scholar]

325. Drosopoulos S, Schulze C, Fischer S, Born J. Sleep's function in the spontaneous recovery and consolidation of memories. J Exp Psychol Gen 136: 169–183, 2007 [PubMed] [Google Scholar]

326. Drosopoulos S, Wagner U, Born J. Sleep enhances explicit recollection in recognition memory. Learn Mem 12: 44–51, 2005 [PMC free article] [PubMed] [Google Scholar]

327. Drosopoulos S, Windau E, Wagner U, Born J. Sleep enforces the temporal order in memory. PLoS One 2: e376, 2007 [PMC free article] [PubMed] [Google Scholar]

328. Drummond SPA, Brown GG. The effects of total sleep deprivation on cerebral responses to cognitive performance. Neuropsychopharmacology 25: S68–S73, 2001 [PubMed] [Google Scholar]

329. Drummond SPA, Brown GG, Gillin JC, Stricker JL, Wong EC, Buxton RB. Altered brain response to verbal learning following sleep deprivation. Nature 403: 655–657, 2000 [PubMed] [Google Scholar]

330. Dudai Y. The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 55: 51–86, 2004 [PubMed] [Google Scholar]

331. Dujardin K, Guerrien A, Mandai O, Sockeel P, Leconte P. Facilitation mnésique par stimulation auditive au cours du sommeil paradoxal (SP) chez l'homme. CR Acad Sci III–Vie 307: 653–656, 1988 [PubMed] [Google Scholar]

332. Dumas TC. Developmental regulation of cognitive abilities: modified composition of a molecular switch turns on associative learning. Prog Neurobiol 76: 189–211, 2005 [PubMed] [Google Scholar]

333. Dumay N, Gareth Gaskell M. Overnight lexical consolidation revealed by speech segmentation. Cognition 123: 119–132, 2012 [PubMed] [Google Scholar]

334. Dumay N, Gaskell MG. Sleep-associated changes in the mental representation of spoken words. Psychol Sci 18: 35–39, 2007 [PubMed] [Google Scholar]

335. Dupret D, O'Neill J, Pleydell-Bouverie B, Csicsvari J. The reorganization and reactivation of hippocampal maps predict spatial memory performance. Nat Neurosci 13: 995–1001, 2010 [PMC free article] [PubMed] [Google Scholar]

336. Durrant SJ, Cairney SA, Lewis PA. Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum. Cereb Cortex 2012 [PubMed] [Google Scholar]

337. Durrant SJ, Taylor C, Cairney S, Lewis PA. Sleep-dependent consolidation of statistical learning. Neuropsychologia 49: 1322–1331, 2011 [PubMed] [Google Scholar]

338. Dustin ML, Colman DR. Neural and immunological synaptic relations. Science 298: 785–789, 2002 [PubMed] [Google Scholar]

339. Ebbinghaus H. Über das Gedächtnis. Untersuchungen zur experimentellen Psychologie . Darmstadt, Germany: Wiss. Buchges., 1992 [Google Scholar]

340. Ego-Stengel V, Wilson MA. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20: 1–10, 2010 [PMC free article] [PubMed] [Google Scholar]

341. Ekstrand B. To sleep, perchance to dream: About why we forget. In: Human Memory: Festschrift for Benton J. Underwood, edited by Duncan C. East Norwalk, CT: Appleton-Century-Crofts, 1972, p. pp. 591–82 [Google Scholar]

342. Ekstrand B. The effect of sleep on human long-term memory. In: Neurobiology of Sleep and Memory, edited by Drucker-Colin R. New York: Academic, 1977, p. 419–438 [Google Scholar]

343. Ekstrand BR. Effect of sleep on memory. J Exp Psychol 75: 64–72, 1967 [PubMed] [Google Scholar]

344. Ekstrand BR, Sullivan MJ, Parker DF, West JN. Spontaneous recovery and sleep. J Exp Psychol 88: 142–144, 1971 [PubMed] [Google Scholar]

345. Ellenbogen JM, Hu PT, Payne JD, Titone D, Walker MP. Human relational memory requires time and sleep. Proc Natl Acad Sci USA 104: 7723–7728, 2007 [PMC free article] [PubMed] [Google Scholar]

346. Ellenbogen JM, Hulbert JC, Jiang Y, Stickgold R. The sleeping brain's influence on verbal memory: boosting resistance to interference. PLoS One 4: e4117, 2009 [PMC free article] [PubMed] [Google Scholar]

347. Ellenbogen JM, Hulbert JC, Stickgold R, Dinges DF, Thompson-Schill SL. Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference. Curr Biol 16: 1290–1294, 2006 [PubMed] [Google Scholar]

348. Ellenbogen JM, Payne JD, Stickgold R. The role of sleep in declarative memory consolidation: passive, permissive, active or none? Curr Opin Neurobiol 16: 716–722, 2006 [PubMed] [Google Scholar]

349. Ellis J, Schantz von M, Jones KHS, Archer SN. Association between specific diurnal preference questionnaire items and PER3 VNTR genotype. Chronobiol Int 26: 464–473, 2009 [PubMed] [Google Scholar]

350. Empson JACPR. Rapid eye movements and remembering. Nature. 1970 [PubMed] [Google Scholar]

351. Engeset A, Sokolowski J, Olszewski WL. Variation in output of leukocytes and erythrocytes in human peripheral lymph during rest and activity. Lymphology 10: 198–203, 1977 [PubMed] [Google Scholar]

352. Erisir A, Harris JL. Decline of the critical period of visual plasticity is concurrent with the reduction of NR2B subunit of the synaptic NMDA receptor in layer 4. J Neurosci 23: 5208–5218, 2003 [PMC free article] [PubMed] [Google Scholar]

353. Eschenko O, Magri C, Panzeri S, Sara SJ. Noradrenergic neurons of the locus coeruleus are phase locked to cortical up-down states during sleep. Cereb Cortex 2012 [PubMed] [Google Scholar]

354. Eschenko O, Molle M, Born J, Sara SJ. Elevated sleep spindle density after learning or after retrieval in rats. J Neurosci 26: 12914–12920, 2006 [PMC free article] [PubMed] [Google Scholar]

355. Eschenko O, Ramadan W, Molle M, Born J, Sara SJ. Sustained increase in hippocampal sharp-wave ripple activity during slow-wave sleep after learning. Learn Mem 15: 222–228, 2008 [PMC free article] [PubMed] [Google Scholar]

356. Eschenko O, Sara SJ. Learning-dependent, transient increase of activity in noradrenergic neurons of locus coeruleus during slow wave sleep in the rat: brain stem-cortex interplay for memory consolidation? Cereb Cortex 18: 2596–2603, 2008 [PubMed] [Google Scholar]

357. Espinosa F, Marks G, Heintz N, Joho RH. Increased motor drive and sleep loss in mice lacking Kv3-type potassium channels. Genes Brain Behav 3: 90–100, 2004 [PubMed] [Google Scholar]

358. Espinosa F, Torres-Vega MA, Marks GA, Joho RH. Ablation of Kv3.1, Kv3.3 potassium channels disrupt thalamocortical oscillations in vitro and in vivo. J Neurosci 28: 5570–5581, 2008 [PMC free article] [PubMed] [Google Scholar]

359. Esquifino AI, Alvarez MP, Cano P, Chacon F, Toso CF, Cardinali DP. 24-hour pattern of circulating prolactin and growth hormone levels and submaxillary lymph node immune responses in growing male rats subjected to social isolation. Endocrine 25: 41–48, 2004 [PubMed] [Google Scholar]

360. Esser SK, Hill SL, Tononi G. Sleep homeostasis and cortical synchronization. I. Modeling the effects of synaptic strength on sleep slow waves. Sleep 30: 1617–1630, 2007 [PMC free article] [PubMed] [Google Scholar]

361. Euston DR, Tatsuno M, McNaughton BL. Fast-forward playback of recent memory sequences in prefrontal cortex during sleep. Science 318: 1147–1150, 2007 [PubMed] [Google Scholar]

362. Evans CR, Newman E. Dreaming: an analogy from computers. New Sci 419: 577–579, 1964 [Google Scholar]

363. Everson CA, Smith CB, Sokoloff L. Effects of prolonged sleep deprivation on local rates of cerebral energy metabolism in freely moving rats. J Neurosci 14: 6769–6778, 1994 [PMC free article] [PubMed] [Google Scholar]

364. Eysenck HJ. A three-factor theory of reminiscence. Br J Psychol 163–181, 1965 [PubMed] [Google Scholar]

365. Fanjaud G, Calvet U, Rous Feneyrols de A, Barrere M, Bes A, Arbus L. Rôle du sommeil paradoxal dans l'apprentissage chez l'homme. Rev Electroencephalogr Neurophysiol Clin 12: 337–343, 1982 [PubMed] [Google Scholar]

366. Faraguna U, Nelson A, Vyazovskiy VV, Cirelli C, Tononi G. Unilateral cortical spreading depression affects sleep need and induces molecular and electrophysiological signs of synaptic potentiation in vivo. Cereb Cortex 20: 2939–2947, 2010 [PMC free article] [PubMed] [Google Scholar]

367. Faraguna U, Vyazovskiy VV, Nelson AB, Tononi G, Cirelli C. A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci 28: 4088–4095, 2008 [PMC free article] [PubMed] [Google Scholar]

368. Feinberg I. Eye movement activity during sleep and intellectual function in mental retardation. Science: 1256, 1968 [PubMed] [Google Scholar]

369. Feinberg I, Evarts EV. Changing concepts of the function of sleep: discovery of intense brain activity during sleep calls for revision of hypotheses as to its function. Biol Psychiatry 1: 331–348, 1969 [PubMed] [Google Scholar]

370. Feld G, Wilhelm I, Ma Y, Groch S, Binkowsky F, Mölle M, Born J. Slow wave sleep induced by GABA agonist tiagabine fails to benefit memory consolidation. Sleep. In press [PMC free article] [PubMed] [Google Scholar]

371. Fell J, Ludowig E, Staresina BP, Wagner T, Kranz T, Elger CE, Axmacher N. Medial temporal theta/alpha power enhancement precedes successful memory encoding: evidence based on intracranial EEG. J Neurosci 31: 5392–5397, 2011 [PMC free article] [PubMed] [Google Scholar]

372. Feng Y, Zhang LX, Chao DM. Role of melatonin in spatial learning and memory in rats and its mechanism. Sheng Li Xue Bao 54: 65–70, 2002 [PubMed] [Google Scholar]

373. Fenn KM, Gallo DA, Margoliash D, Roediger HL, III, Nusbaum HC. Reduced false memory after sleep. Learn Mem 16: 509–513, 2009 [PubMed] [Google Scholar]

374. Fenn KM, Hambrick DZ. Individual differences in working memory capacity predict sleep-dependent memory consolidation. J Exp Psychol Gen 2011 [PubMed] [Google Scholar]

375. Fenn KM, Nusbaum HC, Margoliash D. Consolidation during sleep of perceptual learning of spoken language. Nature 425: 614–616, 2003 [PubMed] [Google Scholar]

376. Ferrara M, Iaria G, Tempesta D, Curcio G, Moroni F, Marzano C, Gennaro de L, Pacitti C. Sleep to find your way: the role of sleep in the consolidation of memory for navigation in humans. Hippocampus 18: 844–851, 2008 [PubMed] [Google Scholar]

377. Ficca G, Axelsson J, Mollicone DJ, Muto V, Vitiello MV. Naps, cognition and performance. Sleep Med Rev 14: 249–258, 2010 [PubMed] [Google Scholar]

378. Ficca G, Lombardo P, Rossi L, Salzarulo P. Morning recall of verbal material depends on prior sleep organization. Behav Brain Res 112: 159–163, 2000 [PubMed] [Google Scholar]

379. Ficca G, Salzarulo P. What in sleep is for memory. Sleep Med 5: 225–230, 2004 [PubMed] [Google Scholar]

380. Fischer S, Born J. Anticipated reward enhances offline learning during sleep. J Exp Psychol Learn 35: 1586–1593, 2009 [PubMed] [Google Scholar]

381. Fischer S, Diekelmann S, Born J. Sleep's role in the processing of unwanted memories. J Sleep Res 20: 267–274, 2011 [PubMed] [Google Scholar]

382. Fischer S, Drosopoulos S, Tsen J, Born J. Implicit learning: explicit knowing: a role for sleep in memory system interaction. J Cogn Neurosci 18: 311–319, 2006 [PubMed] [Google Scholar]

383. Fischer S, Hallschmid M, Elsner AL, Born J. Sleep forms memory for finger skills. Proc Natl Acad Sci USA 99: 11987–11991, 2002 [PMC free article] [PubMed] [Google Scholar]

384. Fischer S, Nitschke MF, Melchert UH, Erdmann C, Born J. Motor memory consolidation in sleep shapes more effective neuronal representations. J Neurosci 25: 11248–11255, 2005 [PMC free article] [PubMed] [Google Scholar]

385. Fischer S, Wilhelm I, Born J. Developmental differences in sleep's role for implicit off-line learning: comparing children with adults. J Cogn Neurosci 19: 214–227, 2007 [PubMed] [Google Scholar]

386. Fishbein W. Disruptive effects of rapid eye movement sleep deprivation on long-term memory. Physiol Behav 6: 279–282, 1971 [PubMed] [Google Scholar]

387. Fishbein W. The case against memory consolidation in REM sleep: Balderdash! Behav Brain Sci 23: 867–876, 2000 [PubMed] [Google Scholar]

388. Fishbein W, Gutwein BM. Paradoxical sleep and memory storage processes. Behav Biol 19: 425–464, 1977 [PubMed] [Google Scholar]

389. Fishbein W, Kastaniotis C, Chattman D. Paradoxical sleep: prolonged augmentation following learning. Brain Res 79: 61–75, 1974 [PubMed] [Google Scholar]

390. Fishbein W, McGaugh JL, Swarz JR. Retrograde amnesia: electroconvulsive shock effects after termination of rapid eye movement sleep deprivation. Science 172: 80–82, 1971 [PubMed] [Google Scholar]

391. Fleidervish IA, Friedman A, Gutnick MJ. Slow inactivation of Na+ current and slow cumulative spike adaptation in mouse and guinea-pig neocortical neurones in slices. J Physiol 493: 83–97, 1996 [PMC free article] [PubMed] [Google Scholar]

392. Fleidervish IA, Gutnick MJ. Kinetics of slow inactivation of persistent sodium current in layer V neurons of mouse neocortical slices. J Neurophysiol 76: 2125–2130, 1996 [PubMed] [Google Scholar]

393. Florian C, Vecsey CG, Halassa MM, Haydon PG, Abel T. Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice. J Neurosci 31: 6956–6962, 2011 [PMC free article] [PubMed] [Google Scholar]

394. Fogel S, Jacob J, Smith C. The role of sleep spindles in simple motor percedural learning. Sleep 25: A279–A80, 2002 [Google Scholar]

395. Fogel SM, Nader R, Cote KA, Smith CT. Sleep spindles and learning potential. Behav Neurosci 121: 1–10, 2007 [PubMed] [Google Scholar]

396. Fogel SM, Smith CT. Learning-dependent changes in sleep spindles and Stage 2 sleep. J Sleep Res 15: 250–255, 2006 [PubMed] [Google Scholar]

397. Fogel SM, Smith CT, Beninger RJ. Evidence for 2-stage models of sleep and memory: learning-dependent changes in spindles and theta in rats. Brain Res Bull 79: 445–451, 2009 [PubMed] [Google Scholar]

398. Fogel SM, Smith CT, Beninger RJ. Too much of a good thing? Elevated baseline sleep spindles predict poor avoidance performance in rats. Brain Res 1319: 112–117, 2010 [PubMed] [Google Scholar]

399. Fogel SM, Smith CT, Cote KA. Dissociable learning-dependent changes in REM and non-REM sleep in declarative and procedural memory systems. Behav Brain Res 180: 48–61, 2007 [PubMed] [Google Scholar]

400. Fois A. Clinical Electroencephalography in Epilepsy and Related Conditions in Children. Springfield, IL: Thomas, 1963 [Google Scholar]

401. Foltenyi K, Greenspan RJ, Newport JW. Activation of EGFR and ERK by rhomboid signaling the consolidation and maintenance of sleep in Drosophila. Nat Neurosci 10: 1160–1167, 2007 [PubMed] [Google Scholar]

402. Fontinha BM, Diogenes MJ, Ribeiro JA, Sebastiao AM. Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine. Neuropharmacology 54: 924–933, 2008 [PubMed] [Google Scholar]

403. Forcato C, Burgos VL, Argibay PF, Molina VA, Pedreira ME, Maldonado H. Reconsolidation of declarative memory in humans. Learn Mem 14: 295–303, 2007 [PMC free article] [PubMed] [Google Scholar]

404. Forcato C, Rodríguez MLC, Pedreira ME, Maldonado H. Reconsolidation in humans opens up declarative memory to the entrance of new information. Neurobiol Learn Mem 93: 77–84, 2010 [PubMed] [Google Scholar]

405. Fosse MJ, Fosse R, Hobson JA, Stickgold RJ. Dreaming and episodic memory: a functional dissociation? J Cogn Neurosci 15: 1–9, 2003 [PubMed] [Google Scholar]

406. Foster DJ, Wilson MA. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440: 680–683, 2006 [PubMed] [Google Scholar]

407. Foster HH. The necessity for new standpoint in sleep theories. Am J Psychol 12: 145–177, 1901 [Google Scholar]

408. Fowler M, Sullivan M, Ekstrand BR. Sleep and memory. Science: 302–304, 1973 [PubMed] [Google Scholar]

409. Frank MG. The functions of sleep. In: Foundations of Psychiatric Sleep Medicine, edited by Winkelman J. Cambridge, UK: Cambridge Univ. Press, 2010, p. 59–78 [Google Scholar]

411. Frank MG, Benington JH. The role of sleep in memory consolidation and brain plasticity: dream or reality? Neuroscientist 12: 477–488, 2006 [PubMed] [Google Scholar]

412. Frank MG, Issa NP, Stryker MP. Sleep enhances plasticity in the developing visual cortex. Neuron 30: 275–287, 2001 [PubMed] [Google Scholar]

413. Frank MG, Jha SK, Coleman T. Blockade of postsynaptic activity in sleep inhibits developmental plasticity in visual cortex. Neuroreport 17: 1459–1463, 2006 [PubMed] [Google Scholar]

414. Franken P, Chollet D, Tafti M. The homeostatic regulation of sleep need is under genetic control. J Neurosci 21: 2610–2621, 2001 [PMC free article] [PubMed] [Google Scholar]

415. Franken P, Dijk DJ. Circadian clock genes and sleep homeostasis. Eur J Neurosci 29: 1820–1829, 2009 [PubMed] [Google Scholar]

416. Franken P, Malafosse A, Tafti M. Genetic variation in EEG activity during sleep in inbred mice. Am J Physiol Regul Integr Comp Physiol 275: R1127–R1137, 1998 [PubMed] [Google Scholar]

417. Franken P, Malafosse A, Tafti M. Genetic determinants of sleep regulation in inbred mice. Sleep 22: 155–169, 1999 [PubMed] [Google Scholar]

418. Frankland PW, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci 6: 119–130, 2005 [PubMed] [Google Scholar]

419. Frey U, Morris RG. Synaptic tagging: implications for late maintenance of hippocampal long-term potentiation. Trends Neurosci 21: 181–188, 1998 [PubMed] [Google Scholar]

420. Fries P. Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 209–224, 2009 [PubMed] [Google Scholar]

421. Fu J, Li P, Ouyang X, Gu C, Song Z, Gao J, Han L, Feng S, Tian S, Hu B. Rapid eye movement sleep deprivation selectively impairs recall of fear extinction in hippocampus-independent tasks in rats. Neuroscience 144: 1186–1192, 2007 [PubMed] [Google Scholar]

422. Fuentemilla L, Penny WD, Cashdollar N, Bunzeck N, Düzel E. Theta-coupled periodic replay in working memory. Curr Biol 20: 606–612, 2010 [PMC free article] [PubMed] [Google Scholar]

423. Fujisawa S, Buzsáki G. A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 72: 153–165, 2011 [PMC free article] [PubMed] [Google Scholar]

424. Fukuda N, Honma H, Kohsaka M, Kobayashi R, Sakakibara S, Kohsaka S, Koyama T. Gender difference of slow wave sleep in middle aged and elderly subjects. Psychiatry Clin Neurosci 53: 151–153, 1999 [PubMed] [Google Scholar]

425. Fukuma E, Umezawa Y, Kobayashi K, Motoike M. Polygraphic study on the nocturnal sleep of children with Down's syndrome and endogenous mental retardation. Folia Psychiat Neurol J 28: 333–345, 1974 [PubMed] [Google Scholar]

426. Gaillard JM, Blois R. Spindle density in sleep of normal subjects. Sleep 4: 385–391, 1981 [PubMed] [Google Scholar]

427. Gais S, Albouy G, Boly M, Dang-Vu TT, Darsaud A, Desseilles M, Rauchs G, Schabus M, Sterpenich V, Vandewalle G, Maquet P, Peigneux P. Sleep transforms the cerebral trace of declarative memories. Proc Natl Acad Sci USA 104: 18778–18783, 2007 [PMC free article] [PubMed] [Google Scholar]

428. Gais S, Born J. Declarative memory consolidation: Mechanisms acting during human sleep. Learn Mem 11: 679–685, 2004 [PMC free article] [PubMed] [Google Scholar]

429. Gais S, Born J. Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proc Natl Acad Sci USA 101: 2140–2144, 2004 [PMC free article] [PubMed] [Google Scholar]

430. Gais S, Hüllemann P, Hallschmid M, Born J. Sleep-dependent surges in growth hormone do not contribute to sleep-dependent memory consolidation. Psychoneuroendocrinology 31: 786–791, 2006 [PubMed] [Google Scholar]

431. Gais S, Lucas B, Born J. Sleep after learning aids memory recall. Learn Mem 13: 259–262, 2006 [PubMed] [Google Scholar]

432. Gais S, Mölle M, Helms K, Born J. Learning-dependent increases in sleep spindle density. J Neurosci 22: 6830–6834, 2002 [PMC free article] [PubMed] [Google Scholar]

433. Gais S, Plihal W, Wagner U, Born J. Early sleep triggers memory for early visual discrimination skills. Nat Neurosci 3: 1335–1339, 2000 [PubMed] [Google Scholar]

434. Gais S, Rasch B, Dahmen JC, Sara S, Born J. The memory function of noradrenergic activity in non-REM sleep. J Cogn Neurosci 23: 2582–2592, 2011 [PubMed] [Google Scholar]

435. Gais S, Rasch B, Wagner U, Born J. Visual-procedural memory consolidation during sleep blocked by glutamatergic receptor antagonists. J Neurosci 28: 5513–5518, 2008 [PMC free article] [PubMed] [Google Scholar]

436. Gala RR. Prolactin and growth hormone in the regulation of the immune system. Proc Soc Exp Biol Med 198: 513–527, 1991 [PubMed] [Google Scholar]

437. Galarreta M, Hestrin S. Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nat Neurosci 1: 587–594, 1998 [PubMed] [Google Scholar]

438. Ganguly-Fitzgerald I, Donlea J, Shaw PJ. Waking experience affects sleep need in Drosophila. Science 313: 1775–1781, 2006 [PubMed] [Google Scholar]

439. Geiger A, Huber R, Kurth S, Ringli M, Jenni OG, Achermann P. The sleep EEG as a marker of intellectual ability in school age children. Sleep 34: 181–189, 2011 [PMC free article] [PubMed] [Google Scholar]

440. Gennaro de L, Ferrara M. Sleep spindles: an overview. Sleep Med Rev 7: 423–440, 2003 [PubMed] [Google Scholar]

441. Gennaro de L, Ferrara M, Bertini M. Topographical distribution of spindles: variations between and within nrem sleep cycles. Sleep Res Online 3: 155–160, 2000 [PubMed] [Google Scholar]

442. Gennaro de L, Ferrara M, Ferlazzo F, Bertini M. Slow eye movements and EEG power spectra during wake-sleep transition. Clin Neurophysiol 111: 2107–2115, 2000 [PubMed] [Google Scholar]

443. Gennaro de L, Fratello F, Marzano C, Moroni F, Curcio G, Tempesta D, Pellicciari MC, Pirulli C, Ferrara M, Rossini PM. Cortical plasticity induced by transcranial magnetic stimulation during wakefulness affects electroencephalogram activity during sleep. PLoS One 3: e2483, 2008 [PMC free article] [PubMed] [Google Scholar]

444. Gennaro de L, Marzano C, Fratello F, Moroni F, Pellicciari MC, Ferlazzo F, Costa S, Couyoumdjian A, Curcio G, Sforza E, Malafosse A, Finelli LA, Pasqualetti P, Ferrara M, Bertini M, Rossini PM. The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann Neurol 64: 455–460, 2008 [PubMed] [Google Scholar]

445. Gennaro de L, Marzano C, Veniero D, Moroni F, Fratello F, Curcio G, Ferrara M, Ferlazzo F, Novelli L, Concetta Pellicciari M, Bertini M, Rossini PM. Neurophysiological correlates of sleepiness: a combined TMS and EEG study. Neuroimage 36: 1277–1287, 2007 [PubMed] [Google Scholar]

446. Genzel L, Dresler M, Wehrle R, Grözinger M, Steiger A. Slow wave sleep and REM sleep awakenings do not affect sleep dependent memory consolidation. Sleep 32: 302–310, 2009 [PMC free article] [PubMed] [Google Scholar]

447. Genzel L, Quack A, Jäger E, Konrad B, Steiger A, Dresler M. Complex motor sequence skills profit from sleep. Neuropsychobiology 66: 237–243, 2012 [PubMed] [Google Scholar]

448. Gerrard JL, Burke SN, McNaughton BL, Barnes CA. Sequence reactivation in the hippocampus is impaired in aged rats. J Neurosci 28: 7883–7890, 2008 [PMC free article] [PubMed] [Google Scholar]

449. Gerrard JL, Kudrimoti H, McNaughton BL, Barnes CA. Reactivation of hippocampal ensemble activity patterns in the aging rat. Behav Neurosci 115: 1180–1192, 2001 [PubMed] [Google Scholar]

450. Gerstner JR, Bremer QZ, Vander Heyden WM, Lavaute TM, Yin JC, Landry CF. Brain fatty acid binding protein (Fabp7) is diurnally regulated in astrocytes and hippocampal granule cell precursors in adult rodent brain. PLoS One 3: e1631, 2008 [PMC free article] [PubMed] [Google Scholar]

451. Gerstner JR, Vanderheyden WM, Shaw PJ, Landry CF, Yin JCP. Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila. PLoS One 6: e15890, 2011 [PMC free article] [PubMed] [Google Scholar]

452. Gerstner JR, Vander Heyden WM, LaVaute TM, Landry CF. Profiles of novel diurnally regulated genes in mouse hypothalamus: expression analysis of the cysteine and histidine-rich domain-containing, zinc-binding protein 1, the fatty acid-binding protein 7 and the GTPase, ras-like family member 11b. Neuroscience 139: 1435–1448, 2006 [PMC free article] [PubMed] [Google Scholar]

453. Geyer H. Concerning the sleep of twins. Z Indukt Abstamm Ver 524, 1937 [Google Scholar]

454. Ghoneim MM, Mewaldt SP. Benzodiazepines and human memory: a review. Anesthesiology 72: 926–938, 1990 [PubMed] [Google Scholar]

455. Gibbs E, Gibbs F. Extreme spindles: correlation of electroencephalographic sleep pattern with mental retardation. Science 138: 1106–1107, 1962 [PubMed] [Google Scholar]

456. Gibbs FGE. Atlas of Electroencephalography. III. Neurological and Psychiatric Disorders. Reading, MA: Addison-Wesley, 1964 [Google Scholar]

457. Gilestro GF, Tononi G, Cirelli C. Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science 324: 109–111, 2009 [PMC free article] [PubMed] [Google Scholar]

458. Girardeau G, Benchenane K, Wiener SI, Buzsáki G, Zugaro MB. Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 12: 1222–1223, 2009 [PubMed] [Google Scholar]

459. Girardeau G, Zugaro M. Hippocampal ripples and memory consolidation. Curr Opin Neurobiol 2011 [PubMed] [Google Scholar]

460. Giuditta A. The biochemistry of sleep. In: Brain Without Mind: Computer Simulation of Neural Networks With Modifiable Neuronal Interactions, edited by Davison A. New York: Academic, 1977, p. 239–337 [Google Scholar]

461. Giuditta A, Ambrosini MV, Montagnese P, Mandile P, Cotugno M, Grassi Zucconi G, Vescia S. The sequential hypothesis of the function of sleep. Behav Brain Res 69: 157–166, 1995 [PubMed] [Google Scholar]

462. Giuditta A, Rutigliano B, Vitale-Neugebauer A. Influence of synchronized sleep on the biosynthesis of RNA in neuronal and mixed fractions isolated from rabbit cerebral cortex. J Neurochem 35: 1267–1272, 1980 [PubMed] [Google Scholar]

463. Gobes SMH, Zandbergen MA, Bolhuis JJ. Memory in the making: localized brain activation related to song learning in young songbirds. Proc Biol Sci 277: 3343–3351, 2010 [PMC free article] [PubMed] [Google Scholar]

464. Goder R, Boigs M, Braun S, Friege L, Fritzer G, Aldenhoff JB, Hinze-Selch D. Impairment of visuospatial memory is associated with decreased slow wave sleep in schizophrenia. J Psychiatr Res 38: 591–599, 2004 [PubMed] [Google Scholar]

465. Goeder R, Fritzer G, Gottwald B, Lippmann B, Seeck-Hirschner M, Serafin I, Aldenhoff JB. Effects of olanzapine on slow wave sleep, sleep spindles and sleep-related memory consolidation in schizophrenia. Pharmacopsychiatry 41: 92–99, 2008 [PubMed] [Google Scholar]

466. Goeder R, Seeck-Hirschner M, Stingele K, Huchzermeier C, Kropp C, Palaschewski M, Aldenhoff J, Koch J. Sleep and cognition at baseline and the effects of REM sleep diminution after 1 week of antidepressive treatment in patients with depression. J Sleep Res 20: 544–551, 2011 [PubMed] [Google Scholar]

467. Goel N, Banks S, Mignot E, Dinges DF. PER3 polymorphism predicts cumulative sleep homeostatic but not neurobehavioral changes to chronic partial sleep deprivation. PLoS One 4: e5874, 2009 [PMC free article] [PubMed] [Google Scholar]

468. Gogtay N, Nugent TF, Herman DH, Ordonez A, Greenstein D, Hayashi KM, Clasen L, Toga AW, Giedd JN, Rapoport JL, Thompson PM. Dynamic mapping of normal human hippocampal development. Hippocampus 16: 664–672, 2006 [PubMed] [Google Scholar]

469. Gómez RL, Bootzin RR, Nadel L. Naps promote abstraction in language-learning infants. Psychol Sci 17: 670–674, 2006 [PubMed] [Google Scholar]

470. Gordon WC, Spear NE. Effect of reactivation of a previously acquired memory on the interaction between memories in the rat. J Exp Psychol 99: 349–355, 1973 [PubMed] [Google Scholar]

471. Gorfine T, Yeshurun Y, Zisapel N. Nap and melatonin-induced changes in hippocampal activation and their role in verbal memory consolidation. J Pineal Res 43: 336–342, 2007 [PubMed] [Google Scholar]

472. Goutagny R, Jackson J, Williams S. Self-generated theta oscillations in the hippocampus. Nat Neurosci 12: 1491–1493, 2009 [PubMed] [Google Scholar]

473. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML. The immunological synapse: a molecular machine controlling T cell activation. Science 285: 221–227, 1999 [PubMed] [Google Scholar]

474. Graves EA. The effect of sleep upon retention. J Exp Psychol 19: 316–322, 1936 [Google Scholar]

475. Graves L, Pack A, Abel T. Sleep and memory: a molecular perspective. Trends Neurosci 24: 237–243, 2001 [PubMed] [Google Scholar]

476. Graves LA, Heller EA, Pack AI, Abel T. Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn Mem 10: 168–176, 2003 [PMC free article] [PubMed] [Google Scholar]

477. Graves LA, Hellman K, Veasey S, Blendy JA, Pack AI, Abel T. Genetic evidence for a role of CREB in sustained cortical arousal. J Neurophysiol 90: 1152–1159, 2003 [PubMed] [Google Scholar]

478. Greenberg R, Pearlman C, Schwartz WR, Grossman HY. Memory, emotion REM. J Abnorm Psych 92: 378–381, 1983 [PubMed] [Google Scholar]

479. Grieser C, Greenberg R, Harrison RH. the adaptive function of sleep. Abnorm Psychol 80: 280–286, 1972 [PubMed] [Google Scholar]

480. Grigg-Damberger M, Gozal D, Marcus CL, Quan SF, Rosen CL, Chervin RD, Wise M, Picchietti DL, Sheldon SH, Iber C. The visual scoring of sleep and arousal in infants and children. J Clin Sleep Med 3: 201–240, 2007 [PubMed] [Google Scholar]

481. Groch S, Wilhelm I, Diekelmann S, Born J. The role of REM sleep in the processing of emotional memories: evidence from behavior and event-related potentials. Neurobiol Learn Mem 2012 [PubMed] [Google Scholar]

482. Groch S, Wilhelm I, Diekelmann S, Sayk F, Gais S, Born J. Contribution of norepinephrine to emotional memory consolidation during sleep. Psychoneuroendocrinology 36: 1342–1350, 2011 [PubMed] [Google Scholar]

483. Groeger JA, Viola AU, Lo JCY, Schantz von M, Archer SN, Dijk D. Early morning executive functioning during sleep deprivation is compromised by a PERIOD3 polymorphism. Sleep 31: 1159–1167, 2008 [PMC free article] [PubMed] [Google Scholar]

484. Groppa S, Bergmann TO, Siems C, Mölle M, Marshall L, Siebner HR. Slow-oscillatory transcranial direct current stimulation can induce bidirectional shifts in motor cortical excitability in awake humans. Neuroscience 166: 1219–1225, 2010 [PubMed] [Google Scholar]

485. Grosmark AD, Mizuseki K, Pastalkova E, Diba K, Buzsáki G. REM sleep reorganizes hippocampal excitability. Neuron 75: 1001–1007, 2012 [PMC free article] [PubMed] [Google Scholar]

486. Grosvenor A, Lack LC. The effect of sleep before or after learning on memory. Sleep 7: 155–167, 1984 [PubMed] [Google Scholar]

487. Guan Z, Vgontzas AN, Omori T, Peng X, Bixler EO, Fang J. Interleukin-6 levels fluctuate with the light-dark cycle in the brain and peripheral tissues in rats. Brain Behav Immun 19: 526–529, 2005 [PubMed] [Google Scholar]

488. Guerrien A. Sommeil paradoxal et processus de mémorisation chez l'homme. Acta Psychiatr Belg 94: 75–87, 1994 [PubMed] [Google Scholar]

489. Guerrien A, Dujardin K, Mandai O, Sockeel P, Leconte P. Enhancement of memory by auditory stimulation during postlearning REM sleep in humans. Physiol Behav 45: 947–950, 1989 [PubMed] [Google Scholar]

490. Gujar N, McDonald SA, Nishida M, Walker MP. A role for REM sleep in recalibrating the sensitivity of the human brain to specific emotions. Cereb Cortex 21: 115–123, 2011 [PMC free article] [PubMed] [Google Scholar]

491. Gujar N, Yoo S, Hu P, Walker MP. Sleep deprivation amplifies reactivity of brain reward networks, biasing the appraisal of positive emotional experiences. J Neurosci 31: 4466–4474, 2011 [PMC free article] [PubMed] [Google Scholar]

492. Gupta AS, van der Meer MA, Touretzky DS, Redish AD. Hippocampal replay is not a simple function of experience. Neuron 65: 695–705, 2010 [PMC free article] [PubMed] [Google Scholar]

493. Gutwein BM, Fishbein W. Paradoxical sleep and memory (I): selective alterations following enriched and impoverished environmental rearing. Brain Res Bull 5: 9–12, 1980 [PubMed] [Google Scholar]

494. Gutwein BM, Fishbein W. Paradoxical sleep and memory (II): sleep circadian rhythmicity following enriched and impoverished environmental rearing. Brain Res Bull 5: 105–109, 1980 [PubMed] [Google Scholar]

495. Gutwein BM, Shiromani PJ, Fishbein W. Paradoxical sleep and memory: long-term disruptive effects of Anisomycin. Pharmacol Biochem Behav 12: 377–384, 1980 [PubMed] [Google Scholar]

496. Guzman-Marin R, Ying Z, Suntsova N, Methippara M, Bashir T, Szymusiak R, Gomez-Pinilla F, McGinty D. Suppression of hippocampal plasticity-related gene expression by sleep deprivation in rats. J Physiol 575: 807–819, 2006 [PMC free article] [PubMed] [Google Scholar]

497. Hager AM, Dringenberg HC. Assessment of different induction protocols to elicit long-term depression (LTD) in the rat visual cortex in vivo. Brain Res: 33–41, 2010 [PubMed] [Google Scholar]

498. Hagewoud R, Bultsma LJ, Barf RP, Koolhaas JM, Meerlo P. Sleep deprivation impairs contextual fear conditioning and attenuates subsequent behavioural, endocrine and neuronal responses. J Sleep Res 20: 259–266, 2011 [PubMed] [Google Scholar]

499. Hagewoud R, Havekes R, Tiba PA, Novati A, Hogenelst K, Weinreder P, van der Zee EA, Meerlo P. Coping with sleep deprivation: Shifts in regional brain activity and learning strategy. Sleep 33: 1465–1473, 2010 [PMC free article] [PubMed] [Google Scholar]

500. Hagewoud R, Whitcomb SN, Heeringa AN, Havekes R, Koolhaas JM, Meerlo P. A time for learning and a time for sleep: the effect of sleep deprivation on contextual fear conditioning at different times of the day. Sleep 33: 1315–1322, 2010 [PMC free article] [PubMed] [Google Scholar]

501. Hahn TTG, McFarland JM, Berberich S, Sakmann B, Mehta MR. Spontaneous persistent activity in entorhinal cortex modulates cortico-hippocampal interaction in vivo. Nat Neurosci 15: 1531–1538, 2012 [PMC free article] [PubMed] [Google Scholar]

502. Hahn TTG, Sakmann B, Mehta MR. Phase-locking of hippocampal interneurons' membrane potential to neocortical up-down states. Nat Neurosci 9: 1359–1361, 2006 [PubMed] [Google Scholar]

503. Hahn TTG, Sakmann B, Mehta MR. Differential responses of hippocampal subfields to cortical up-down states. Proc Natl Acad Sci USA 104: 5169–5174, 2007 [PMC free article] [PubMed] [Google Scholar]

504. Hahnloser RHR, Wang CZ, Nager A, Naie K. Spikes and bursts in two types of thalamic projection neurons differentially shape sleep patterns and auditory responses in a songbird. J Neurosci 28: 5040–5052, 2008 [PMC free article] [PubMed] [Google Scholar]

505. Haider B, Duque A, Hasenstaub AR, McCormick DA. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci 26: 4535–4545, 2006 [PMC free article] [PubMed] [Google Scholar]

506. Halassa MM, Florian C, Fellin T, Munoz JR, Lee SY, Abel T, Haydon PG, Frank MG. Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61: 213–219, 2009 [PMC free article] [PubMed] [Google Scholar]

507. Halassa MM, Siegle JH, Ritt JT, Ting JT, Feng G, Moore CI. Selective optical drive of thalamic reticular nucleus generates thalamic bursts and cortical spindles. Nat Neurosci 14: 1118–1120, 2011 [PMC free article] [PubMed] [Google Scholar]

508. Halberg F, Johnson E, Brown B, Bittner J. Susceptibility rhythm to E. coli endotoxin and bioassay. Proc Soc Exp Biol Med 103: 142–144, 1960 [PubMed] [Google Scholar]

509. Hallschmid M, Wilhelm I, Michel C, Perras B, Born J. A role for central nervous growth hormone-relasing hormone signaling in the consolidation of declarative memories. PLoS ONE 6: e23435, 2011 [PMC free article] [PubMed] [Google Scholar]

510. Hanlon EC, Faraguna U, Vyazovskiy VV, Tononi G, Cirelli C. Effects of skilled training on sleep slow wave activity and cortical gene expression in the rat. Sleep 32: 719–729, 2009 [PMC free article] [PubMed] [Google Scholar]

511. Hannula DE, Ranganath C. The eyes have it: hippocampal activity predicts expression of memory in eye movements. Neuron 63: 592–599, 2009 [PMC free article] [PubMed] [Google Scholar]

512. Harand C, Bertran F, Doidy F, Guénolé F, Desgranges B, Eustache F, Rauchs G. How aging affects sleep-dependent memory consolidation? Front Neurol 3: 8, 2012 [PMC free article] [PubMed] [Google Scholar]

513. Hardt O, Einarsson EO, Nader K. A bridge over troubled water: reconsolidation as a link between cognitive and neuroscientific memory research traditions. Annu Rev Psychol 61: 141–167, 2010 [PubMed] [Google Scholar]

514. Harris KD, Henze DA, Hirase H, Leinekugel X, Dragoi G, Czurko A, Buzsaki G. Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature 417: 738–741, 2002 [PubMed] [Google Scholar]

515. Harrison Y, Horne JA. Sleep loss and temporal memory. Q J Exp Psychol 53: 271–279, 2000 [PubMed] [Google Scholar]

516. Hars B, Hennevin E. Reminder abolishes impairment of learning induced by paradoxical sleep retardation. Physiol Behav 30: 831–836, 1983 [PubMed] [Google Scholar]

517. Hars B, Hennevin E. Impairment of learning by cueing during postlearning slow-wave sleep in rats. Neurosci Lett 79: 290–294, 1987 [PubMed] [Google Scholar]

518. Hars B, Hennevin E. Reactivation of an old memory during sleep and wakefulness. Anim Learn Behav 18: 365–376, 1990 [Google Scholar]

519. Hars B, Hennevin E, Pasques P. Improvement of learning by cueing during postlearning paradoxical sleep. Behav Brain Res 18: 241–250, 1985 [PubMed] [Google Scholar]

520. Hasselmo ME. Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci 3: 351–359, 1999 [PubMed] [Google Scholar]

521. Hasselmo ME. Temporally structured replay of neural activity in a model of entorhinal cortex, hippocampus and postsubiculum. Eur J Neurosci 28: 1301–1315, 2008 [PMC free article] [PubMed] [Google Scholar]

522. Hasselmo ME, McGaughy J. High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog Brain Res 145: 207–231, 2004 [PubMed] [Google Scholar]

523. Hauptmann B, Reinhart E, Brandt SA, Karni A. The predictive value of the leveling off of within session performance for procedural memory consolidation. Brain Res Cogn Brain Res 24: 181–189, 2005 [PubMed] [Google Scholar]

524. Havekes R, Vecsey CG, Abel T. The impact of sleep deprivation on neuronal and glial signaling pathways important for memory and synaptic plasticity. Cell Signal 24: 1251–1260, 2012 [PMC free article] [PubMed] [Google Scholar]

525. Hawkins J, Phillips N, Moore JD, Gilliland MA, Dunbar S, Hicks RA. Emotionality and REMD: a rat swimming model. Physiol Behav 25: 167–171, 1980 [PubMed] [Google Scholar]

526. Heath AC, Kendler KS, Eaves LJ, Martin NG. Evidence for genetic influences on sleep disturbance and sleep pattern in twins. Sleep 13: 318–335, 1990 [PubMed] [Google Scholar]

527. Hebb DO. The Organization of Behavior; A Neuropsychological Theory. New York: Wiley, 1949 [Google Scholar]

528. Heine R. über Wiedererkennen und rückwirkende Hemmung. Leipzig, Germany: Barth, 1914 [Google Scholar]

530. Henderson LM, Weighall AR, Brown H, Gareth Gaskell M. Consolidation of vocabulary is associated with sleep in children. Dev Sci 15: 674–687, 2012 [PubMed] [Google Scholar]

531. Hendricks JC, Lu S, Kume K, Yin JCP, Yang Z, Sehgal A. Gender dimorphism in the role of cycle (BMAL1) in rest, rest regulation, and longevity in Drosophila melanogaster. J Biol Rhythms 18: 12–25, 2003 [PubMed] [Google Scholar]

532. Hendricks JC, Williams JA, Panckeri K, Kirk D, Tello M, Yin JC, Sehgal A. A non-circadian role for cAMP signaling and CREB activity in Drosophila rest homeostasis. Nat Neurosci 4: 1108–1115, 2001 [PubMed] [Google Scholar]

533. Henke K, Mondadori CRA, Treyer V, Nitsch RM, Buck A, Hock C. Nonconscious formation and reactivation of semantic associations by way of the medial temporal lobe. Neuropsychologia 41: 863–876, 2003 [PubMed] [Google Scholar]

534. Hennevin E, Hars B. Is increase in post-learning paradoxical sleep modified by cueing? Behav Brain Res 24: 243–249, 1987 [PubMed] [Google Scholar]

535. Hennevin E, Hars B, Bloch V. Improvement of learning by mesencephalic reticular stimulation during postlearning paradoxical sleep. Behav Neural Biol 51: 291–306, 1989 [PubMed] [Google Scholar]

536. Hennevin E, Hars B, Maho C, Bloch V. Processing of learned information in paradoxical sleep: relevance for memory. Behav Brain Res 69: 125–135, 1995 [PubMed] [Google Scholar]

537. Hennevin E, Hars B, Maho C, Bloch V. Processing of learned information in paradoxical sleep: relevance for memory. Behav Brain Res 69: 125–135, 1995 [PubMed] [Google Scholar]

538. Hennevin E, Huetz C, Edeline J. Neural representations during sleep: from sensory processing to memory traces. Neurobiol Learn Mem 87: 416–440, 2007 [PubMed] [Google Scholar]

539. Hennevin E, Leconte P. Study of the relations between paradoxical sleep and learning processes. Physiol Behav 18: 307–319, 1977 [PubMed] [Google Scholar]

540. Hennevin E, Leconte P, Bloch V. Paradoxical sleep increase triggered by learning, extinction and relearning of a response based on a positive reinforcement. Brain Res 70: 43–54, 1974 [PubMed] [Google Scholar]

541. Hennevin E, Maho C. Fear conditioning-induced plasticity in auditory thalamus and cortex: to what extent is it expressed during slow-wave sleep? Behav Neurosci 119: 1277–1289, 2005 [PubMed] [Google Scholar]

542. Hennevin E, Maho C, Hars B. Neuronal plasticity induced by fear conditioning is expressed during paradoxical sleep: evidence from simultaneous recordings in the lateral amygdala and the medial geniculate in rats. Behav Neurosci 112: 839–862, 1998 [PubMed] [Google Scholar]

543. Hennevin E, Maho C, Hars B, Dutrieux G. Learning-induced plasticity in the medial geniculate nucleus is expressed during paradoxical sleep. Behav Neurosci 107: 1018–1030, 1993 [PubMed] [Google Scholar]

544. Hennevin E. Post-learning paradoxical sleep. A critical period when new memory is reactivated ? In: Brain Plasticity, Learning and Memory, edited by Will B, Schmitt P. New York: Plenum, 1985, p. 193–203 [Google Scholar]

545. Hensch TK. Critical period plasticity in local cortical circuits. Nat Rev Neurosci 6: 877–888, 2005 [PubMed] [Google Scholar]

546. Hernandez PJ, Abel T. A molecular basis for interactions between sleep and memory. Sleep Med Clinics 6: 71–84, 2011 [PMC free article] [PubMed] [Google Scholar]

547. Herzog N, Friedrich A, Fujita N, Gais S, Jauch-Chara K, Oltmanns KM, Benedict C. Effects of daytime food intake on memory consolidation during sleep or sleep deprivation. PLoS One 7: e40298, 2012 [PMC free article] [PubMed] [Google Scholar]

548. Heuer H, Spijkers W, Kiesswetter E, Schmidtke V. Effects of sleep loss, time of day, and extended mental work on implicit and explicit learning of sequences. J Exp Psychol Appl 4: 139–162, 1998 [PubMed] [Google Scholar]

549. Higashima M, Kinoshita H, Koshino Y. Differences in the effects of zolpidem and diazepam on recurrent inhibition and long-term potentiation in rat hippocampal slices. Neurosci Lett 245: 77–80, 1998 [PubMed] [Google Scholar]

550. Himanen S, Virkkala J, Huhtala H, Hasan J. Spindle frequencies in sleep EEG show U-shape within first four NREM sleep episodes. J Sleep Res 11: 35–42, 2002 [PubMed] [Google Scholar]

551. Hirase H, Leinekugel X, Czurkó A, Csicsvari J, Buzsáki G. Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel awake experience. Proc Natl Acad Sci USA 98: 9386–9390, 2001 [PMC free article] [PubMed] [Google Scholar]

552. Hirsch JC, Fourment A, Marc ME. Sleep-related variations of membrane potential in the lateral geniculate body relay neurons of the cat. Brain Res 259: 308–312, 1983 [PubMed] [Google Scholar]

553. Hobson JA. Sleep is of the brain, by the brain and for the brain. Nature 437: 1254–1256, 2005 [PubMed] [Google Scholar]

554. Hobson JA, Pace-Schott EF. The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nat Rev Neurosci 3: 679–693, 2002 [PubMed] [Google Scholar]

555. Hofer SB. Structural traces of past experience in the cerebral cortex. J Mol Med 88: 235–239, 2010 [PubMed] [Google Scholar]

556. Hoffman KL, McNaughton BL. Coordinated reactivation of distributed memory traces in primate neocortex. Science 297: 2070–2073, 2002 [PubMed] [Google Scholar]

557. Hofle N, Paus T, Reutens D, Fiset P, Gotman J, Evans AC, Jones BE. Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J Neurosci 17: 4800–4808, 1997 [PMC free article] [PubMed] [Google Scholar]

558. Holdstock TL, Verschoor GJ. Retention of maze learning following paradoxical sleep deprivation in rats. Physiol Psychol 29–32, 1973 [Google Scholar]

559. Holdstock TL, Verschoor GJ. Student sleep patterns before, during and after an examination period. S Afr J Psychol 16–24, 1974 [Google Scholar]

560. Holland P, Lewis PA. Emotional memory: selective enhancement by sleep. Curr Biol 17: R179–R181, 2007 [PubMed] [Google Scholar]

561. Hölscher C, Anwyl R, Rowan MJ. Stimulation on the positive phase of hippocampal theta rhythm induces long-term potentiation that can be depotentiated by stimulation on the negative phase in area CA1 in vivo. J Neurosci 17: 6470–6477, 1997 [PMC free article] [PubMed] [Google Scholar]

562. Holz J, Piosczyk H, Feige B, Spiegelhalder K, Baglioni C, Riemann D, Nissen C. EEG sigma and slow-wave activity during NREM sleep correlate with overnight declarative and procedural memory consolidation. J Sleep Res 21: 612–619, 2012 [PubMed] [Google Scholar]

563. Holz J, Piosczyk H, Landmann N, Feige B, Spiegelhalder K, Riemann D, Nissen C, Voderholzer U. The timing of learning before night-time sleep differentially affects declarative and procedural long-term memory consolidation in adolescents. PLoS One 7: e40963, 2012 [PMC free article] [PubMed] [Google Scholar]

564. Hopfield JJ, Feinstein DI, Palmer RG. “Unlearning” has a stabilizing effect in collective memories. Nature 304: 158–159, 1983 [PubMed] [Google Scholar]

565. Horn D, Levy N, Ruppin E. Memory maintenance via neuronal regulation. Neural Comput 10: 1–18, 1998 [PubMed] [Google Scholar]

566. Horn D, Levy N, Ruppin E. Neuronal regulation versus synaptic unlearning in memory maintenance mechanisms. Network 9: 577–586, 1998 [PubMed] [Google Scholar]

567. Horn G. Pathways of the past: the imprint of memory. Nat Rev Neurosci 5: 108–120, 2004 [PubMed] [Google Scholar]

568. Horn G, Nicol AU, Brown MW. Tracking memory's trace. Proc Natl Acad Sci USA 98: 5282–5287, 2001 [PMC free article] [PubMed] [Google Scholar]

569. Horne JA, McGrath MJ. The consolidation hypothesis for REM sleep function: stress and other confounding factors–a review. Biol Psychol 18: 165–184, 1984 [PubMed] [Google Scholar]

570. Hornung OP, Regen F, Danker-Hopfe H, Schredl M, Heuser I. The relationship between REM sleep and memory consolidation in old age and effects of cholinergic medication. Biol Psychiatry 61: 750–757, 2007 [PubMed] [Google Scholar]

571. Hornung OP, Regen F, Warnstedt C, Anghelescu I, Danker-Hopfe H, Heuser I, Lammers C. Declarative and procedural memory consolidation during sleep in patients with borderline personality disorder. J Psychiatr Res 42: 653–658, 2008 [PubMed] [Google Scholar]

572. Hot P, Rauchs G, Bertran F, Denise P, Desgranges B, Clochon P, Eustache F. Changes in sleep theta rhythm are related to episodic memory impairment in early Alzheimer's disease. Biol Psychol 87: 334–339, 2011 [PubMed] [Google Scholar]

573. Hotermans C, Peigneux P, Maertens Noordhout de A, Moonen G, Maquet P. Early boost and slow consolidation in motor skill learning. Learn Mem 13: 580–583, 2006 [PubMed] [Google Scholar]

574. Hu P, Stylos-Allan M, Walker MP. Sleep facilitates consolidation of emotional declarative memory. Psychol Sci 17: 891–898, 2006 [PubMed] [Google Scholar]

575. Hu XD, Ge YX, Hu NW, Zhang HM, Zhou LJ, Zhang T, Li WM, Han YF, Liu XG. Diazepam inhibits the induction and maintenance of LTP of C-fiber evoked field potentials in spinal dorsal horn of rats. Neuropharmacology 50: 238–244, 2006 [PubMed] [Google Scholar]

576. Huang CC, Liang YC, Hsu KS. A role for extracellular adenosine in time-dependent reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J Neurosci 19: 9728–9738, 1999 [PMC free article] [PubMed] [Google Scholar]

577. Huang MP, Radadia K, Macone BW, Auerbach SH, Datta S. Effects of eszopiclone and zolpidem on sleep-wake behavior, anxiety-like behavior and contextual memory in rats. Behav Brain Res 210: 54–66, 2010 [PMC free article] [PubMed] [Google Scholar]

578. Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, Urade Y, Hayaishi O. Adenosine A2(A), but not A(1), receptors mediate the arousal effect of caffeine. Nat Neurosci 8: 858–859, 2005 [PubMed] [Google Scholar]

579. Huber R, Deboer T, Tobler I. Prion protein: a role in sleep regulation? J Sleep Res 8 Suppl 1: 30–36, 1999 [PubMed] [Google Scholar]

580. Huber R, Esser SK, Ferrarelli F, Massimini M, Peterson MJ, Tononi G. TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep. PLoS One 2: e276, 2007 [PMC free article] [PubMed] [Google Scholar]

581. Huber R, Ghilardi MF, Massimini M, Ferrarelli F, Riedner BA, Peterson MJ, Tononi G. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci 9: 1169–1176, 2006 [PubMed] [Google Scholar]

582. Huber R, Ghilardi MF, Massimini M, Tononi G. Local sleep and learning. Nature 430: 78–81, 2004 [PubMed] [Google Scholar]

583. Huber R, Määttä S, Esser SK, Sarasso S, Ferrarelli F, Watson A, Ferreri F, Peterson MJ, Tononi G. Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep. J Neurosci 28: 7911–7918, 2008 [PMC free article] [PubMed] [Google Scholar]

584. Huber R, Tononi G, Cirelli C. Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep 30: 129–139, 2007 [PubMed] [Google Scholar]

585. Huerta PT, Lisman JE. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature 364: 723–725, 1993 [PubMed] [Google Scholar]

586. Hughes SW, Cope DW, Blethyn KL, Crunelli V. Cellular mechanisms of the slow (1 Hz) oscillation in thalamocortical neurons in vitro. Neuron 33: 947–958, 2002 [PubMed] [Google Scholar]

587. Hume KI, Van F, Watson A. A field study of age and gender differences in habitual adult sleep. J Sleep Res 7: 85–94, 1998 [PubMed] [Google Scholar]

588. Hupbach A, Gomez R, Hardt O, Nadel L. Reconsolidation of episodic memories: a subtle reminder triggers integration of new information. Learn Mem 14: 47–53, 2007 [PMC free article] [PubMed] [Google Scholar]

589. Hupbach A, Gomez RL, Bootzin RR, Nadel L. Nap-dependent learning in infants. Dev Sci 12: 1007–1012, 2009 [PubMed] [Google Scholar]

590. Hupbach A, Hardt O, Gomez R, Nadel L. The dynamics of memory: context-dependent updating. Learn Mem 15: 574–579, 2008 [PubMed] [Google Scholar]

591. Iber C, Ancoli-Israel S, Chesson A, Quan SF. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology, and Technical Specification. Westchester, IL: American Academy of Sleep Medicine, 2007 [Google Scholar]

592. Idzikowski C. Sleep and memory. Br J Psychol 75: 439–449, 1984 [PubMed] [Google Scholar]

593. Inostroza M, Binder S, Born J. Sleep-dependency of episodic-like memory consolidation in rats. Behav Brain Res 237: 15–22, 2012 [PubMed] [Google Scholar]

594. Inoue S, Honda K, Komoda Y. Sleep as neuronal detoxification and restitution. Behav Brain Res 69: 91–96, 1995 [PubMed] [Google Scholar]

595. Irwin M, McClintick J, Costlow C, Fortner M, White J, Gillin JC. Partial night sleep deprivation reduces natural killer and cellular immune responses in humans. FASEB J 10: 643–653, 1996 [PubMed] [Google Scholar]

596. Ishikawa A, Kanayama Y, Matsumura H, Tsuchimochi H, Ishida Y, Nakamura S. Selective rapid eye movement sleep deprivation impairs the maintenance of long-term potentiation in the rat hippocampus. Eur J Neurosci 24: 243–248, 2006 [PubMed] [Google Scholar]

597. Isomura Y, Sirota A, Ozen S, Montgomery S, Mizuseki K, Henze DA, Buzsáki G. Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron 52: 871–882, 2006 [PubMed] [Google Scholar]

598. Izumi Y, Zorumski CF. Norepinephrine promotes long-term potentiation in the adult rat hippocampus in vitro. Synapse 31: 196–202, 1999 [PubMed] [Google Scholar]

599. Izumi Y, Zorumski CF. Direct cortical inputs erase long-term potentiation at Schaffer collateral synapses. J Neurosci 28: 9557–9563, 2008 [PMC free article] [PubMed] [Google Scholar]

600. Jackson C, McCabe BJ, Nicol AU, Grout AS, Brown MW, Horn G. Dynamics of a memory trace: effects of sleep on consolidation. Curr Biol 18: 393–400, 2008 [PubMed] [Google Scholar]

601. Jang H, Cho K, Park S, Kim M, Yoon SH, Rhie D. Effects of serotonin on the induction of long-term depression in the rat visual cortex. Korean J Physiol Phar 14: 337–343, 2010 [PMC free article] [PubMed] [Google Scholar]

602. Javadi AH, Walsh V, Lewis PA. Offline consolidation of procedural skill learning is enhanced by negative emotional content. Exp Brain Res 208: 507–517, 2011 [PubMed] [Google Scholar]

603. Jenkins JG, Dallenbach KM. Obliviscence During Sleep and Waking. Am J Psychol 605–612, 1924 [Google Scholar]

604. Jenni OG, Carskadon MA. Spectral analysis of the sleep electroencephalogram during adolescence. Sleep 27: 774–783, 2004 [PubMed] [Google Scholar]

605. Jha SK, Jones BE, Coleman T, Steinmetz N, Law CT, Griffin G, Hawk J, Dabbish N, Kalatsky VA, Frank MG. Sleep-dependent plasticity requires cortical activity. J Neurosci 25: 9266–9274, 2005 [PMC free article] [PubMed] [Google Scholar]

606. Ji D, Wilson MA. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10: 100–107, 2007 [PubMed] [Google Scholar]

607. John J, Ramanathan L, Siegel JM. Rapid changes in glutamate levels in the posterior hypothalamus across sleep-wake states in freely behaving rats. Am J Physiol Regul Integr Comp Physiol 295: R2041, 2008 [PMC free article] [PubMed] [Google Scholar]

608. Johnson LA, Euston DR, Tatsuno M, McNaughton BL. Stored-trace reactivation in rat prefrontal cortex is correlated with down-to-up state fluctuation density. J Neurosci 30: 2650–2661, 2010 [PMC free article] [PubMed] [Google Scholar]

609. Jones KHS, Ellis J, Schantz von M, Skene DJ, Dijk D, Archer SN. Age-related change in the association between a polymorphism in the PER3 gene and preferred timing of sleep and waking activities. J Sleep Res 16: 12–16, 2007 [PMC free article] [PubMed] [Google Scholar]

610. Jones S, Pfister-Genskow M, Benca RM, Cirelli C. Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. J Neurochem 105: 46–62, 2008 [PubMed] [Google Scholar]

611. Joy RM, Prinz PN. The effect of sleep altering environments upon the acquisition and retention of a conditioned avoidance response in the rat. Physiol Behav 4: 809–814, 1969 [Google Scholar]

612. Kahana MJ, Sekuler R, Caplan JB, Kirschen M, Madsen JR. Human theta oscillations exhibit task dependence during virtual maze navigation. Nature 399: 781–784, 1999 [PubMed] [Google Scholar]

613. Káli S, Dayan P. Off-line replay maintains declarative memories in a model of hippocampal-neocortical interactions. Nat Neurosci 7: 286–294, 2004 [PubMed] [Google Scholar]

614. Kambeitz JP, Bhattacharyya S, Kambeitz-Ilankovic LM, Valli I, Collier DA, McGuire P. Effect of BDNF val(66)met polymorphism on declarative memory and its neural substrate: a meta-analysis. Neurosci Biobehav Rev 36: 2165–2177, 2012 [PubMed] [Google Scholar]

615. Kammer von der H, Demiralay C, Andresen B, Albrecht C, Mayhaus M, Nitsch RM. Regulation of gene expression by muscarinic acetylcholine receptors. Biochem Soc Symp 131–140, 2001 [PubMed] [Google Scholar]

616. Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294: 1030–1038, 2001 [PubMed] [Google Scholar]

617. Kang H, Sun LD, Atkins CM, Soderling TR, Wilson MA, Tonegawa S. An important role of neural activity-dependent CaMKIV signaling in the consolidation of long-term memory. Cell 106: 771–783, 2001 [PubMed] [Google Scholar]

618. Karashima A, Katayama N, Nakao M. Phase-locking of spontaneous and tone-elicited pontine waves to hippocampal theta waves during REM sleep in rats. Brain Res 1182: 73–81, 2007 [PubMed] [Google Scholar]

619. Karashima A, Nakao M, Honda K, Iwasaki N, Katayama N, Yamamoto M. Theta wave amplitude and frequency are differentially correlated with pontine waves and rapid eye movements during REM sleep in rats. Neurosci Res 50: 283–289, 2004 [PubMed] [Google Scholar]

620. Karashima A, Nakao M, Katayama N, Honda K. Instantaneous acceleration and amplification of hippocampal theta wave coincident with phasic pontine activities during REM sleep. Brain Res 1051: 50–56, 2005 [PubMed] [Google Scholar]

621. Karlsson MP, Frank LM. Awake replay of remote experiences in the hippocampus. Nat Neurosci 12: 913–918, 2009 [PMC free article] [PubMed] [Google Scholar]

622. Karni A, Tanne D, Rubenstein BS, Askenasy JJ, Sagi D. Dependence on REM sleep. Science 679–682, 1994 [PubMed] [Google Scholar]

623. Karpicke JD, Roediger HL., III The critical importance of retrieval for learning. Science 319: 966–968, 2008 [PubMed] [Google Scholar]

624. Kattler Dijk Borbély. Effect of unilateral somatosensory stimulation prior to sleep on the sleep EEG in humans. J Sleep Res 3: 159–164, 1994 [PubMed] [Google Scholar]

625. Kavanau JL. Memory, sleep and the evolution of mechanisms of synaptic efficacy maintenance. Neuroscience 79: 7–44, 1997 [PubMed] [Google Scholar]

626. Kelemen E, Born J. Sleep tight, wake up bright. Nat Neurosci 15: 1327–1329, 2012 [PubMed] [Google Scholar]

627. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk H, Kramer A, Maier B. A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci USA 106: 21407–21412, 2009 [PMC free article] [PubMed] [Google Scholar]

628. Kemp A, Manahan-Vaughan D. The 5-hydroxytryptamine4 receptor exhibits frequency-dependent properties in synaptic plasticity and behavioural metaplasticity in the hippocampal CA1 region in vivo. Cereb Cortex 15: 1037–1043, 2005 [PubMed] [Google Scholar]

629. Kemp A, Manahan-Vaughan D. Hippocampal long-term depression: master or minion in declarative memory processes? Trends Neurosci 30: 111–118, 2007 [PubMed] [Google Scholar]

630. Kemp N, Bashir ZI. Long-term depression: a cascade of induction and expression mechanisms. Prog Neurobiol 65: 339–365, 2001 [PubMed] [Google Scholar]

631. Kempler L, Richmond JL. Effect of sleep on gross motor memory. Memory 2012 [PubMed] [Google Scholar]

632. Keppel G. Consolidation and forgetting. In: Consolidation and Forgetting, edited by Weingartner H, Parker ES. Hillsdale, NJ: L. Erlbaum Associates, 1984 [Google Scholar]

633. Kerr DS, Abraham WC. Cooperative interactions among afferents govern the induction of homosynaptic long-term depression in the hippocampus. Proc Natl Acad Sci USA 92: 11637–11641, 1995 [PMC free article] [PubMed] [Google Scholar]

634. Killgore WDS. Effects of sleep deprivation on cognition. Prog Brain Res 185: 105–129, 2010 [PubMed] [Google Scholar]

635. Kim C, Choi H, Kim JK, Kim MS, Huh MK, Moon YB. Sleep pattern of hippocampectomized cat. Brain Res 29: 223–236, 1971 [PubMed] [Google Scholar]

636. Kim EY, Mahmoud GS, Grover LM. REM sleep deprivation inhibits LTP in vivo in area CA1 of rat hippocampus. Neurosci Lett 388: 163–167, 2005 [PubMed] [Google Scholar]

637. Kimata H. Enhancement of allergic skin responses by total sleep deprivation in patients with allergic rhinitis. Int Arch Allergy Immunol 128: 351–352, 2002 [PubMed] [Google Scholar]

638. Kimura M, Winkelmann J. Genetics of sleep and sleep disorders. Cell Mol Life Sci 64: 1216–1226, 2007 [PubMed] [Google Scholar]

639. Kindt M, Soeter M, Vervliet B. Beyond extinction: erasing human fear responses and preventing the return of fear. Nat Neurosci 12: 256–258, 2009 [PubMed] [Google Scholar]

640. King C. Hebbian Modification of a Hippocampal Population Pattern in the Rat. Oxford, UK: Blackwell Science, 1999 [PMC free article] [PubMed] [Google Scholar]

641. Kioussis D, Pachnis V. Immune and nervous systems: more than just a superficial similarity? Immunity 31: 705–710, 2009 [PubMed] [Google Scholar]

642. Kirkwood A, Rozas C, Kirkwood J, Perez F, Bear MF. Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine. J Neurosci 19: 1599–1609, 1999 [PMC free article] [PubMed] [Google Scholar]

643. Kirov R, Weiss C, Siebner HR, Born J, Marshall L. Slow oscillation electrical brain stimulation during waking promotes EEG theta activity and memory encoding. Proc Natl Acad Sci USA 106: 15460–15465, 2009 [PMC free article] [PubMed] [Google Scholar]

644. Kitahama K, Valatx JL, Jouvet M. Apprentissage d'un labyrinthe en Y chez deux soches de souris. Effets de la privation instrumentale et pharmacologique du sommeil. Brain Res 108: 75–86, 1976 [PubMed] [Google Scholar]

645. Kiyono S, Seo ML, Shibagaki M. Effects of rearing environments upon sleep-waking parameters in rats. Physiol Behav 26: 391–394, 1981 [PubMed] [Google Scholar]

646. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29: 169–195, 1999 [PubMed] [Google Scholar]

647. Klimesch W, Hanslmayr S, Sauseng P, Gruber W, Brozinsky CJ, Kroll NEA, Yonelinas AP, Doppelmayr M. Oscillatory EEG correlates of episodic trace decay. Cereb Cortex 16: 280–290, 2006 [PubMed] [Google Scholar]

648. Kloet de ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6: 463–475, 2005 [PubMed] [Google Scholar]

649. Kloet de ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr Rev 19: 269–301, 1998 [PubMed] [Google Scholar]

650. Knudsen EI. Sensitive periods in the development of the brain and behavior. J Cogn Neurosci 16: 1412–1425, 2004 [PubMed] [Google Scholar]

651. Knutson KL, Spiegel K, Penev P, van Cauter E. The metabolic consequences of sleep deprivation. Sleep Med Rev 11: 163–178, 2007 [PMC free article] [PubMed] [Google Scholar]

652. Kobayashi R, Kohsaka M, Fukuda N, Honma H, Sakakibara S, Koyama T. Gender differences in the sleep of middle-aged individuals. Psychiatry Clin Neurosci 52: 186–187, 1998 [PubMed] [Google Scholar]

653. Koh K, Joiner WJ, Wu MN, Yue Z, Smith CJ, Sehgal A. Identification of SLEEPLESS, a sleep-promoting factor. Science 321: 372–376, 2008 [PMC free article] [PubMed] [Google Scholar]

654. Kojima T, Matsumoto M, Togashi H, Tachibana K, Kemmotsu O, Yoshioka M. Fluvoxamine suppresses the long-term potentiation in the hippocampal CA1 field of anesthetized rats: an effect mediated via 5-HT1A receptors. Brain Res 959: 165–168, 2003 [PubMed] [Google Scholar]

655. Koniaris E, Drimala P, Sotiriou E, Papatheodoropoulos C. Different effects of zolpidem and diazepam on hippocampal sharp wave-ripple activity in vitro. Neuroscience 175: 224–234, 2011 [PubMed] [Google Scholar]

656. Koninck de J, Christ G, Hebert G, Rinfret N. Language learning efficiency, dreams and REM sleep. Psychiatr J Univ Ott 15: 91–92, 1990 [PubMed] [Google Scholar]

657. Koninck de J, Lorrain D, Christ G, Proulx G, Coulombe D. Intensive language learning and increases in rapid eye movement sleep: evidence of a performance factor. Int J Psychophysiol 8: 43–47, 1989 [PubMed] [Google Scholar]

658. Koninck de J, Prevost F. Paradoxical sleep and information processing: an exploration with inversion of the visual field. Can J Psychol 45: 125–139, 1991 [PubMed] [Google Scholar]

659. Koninck de J, Prévost F, Lortie-Lussier M. Vertical inversion of the visual field and REM sleep mentation. J Sleep Res 5: 16–20, 1996 [PubMed] [Google Scholar]

660. Konishi M. The role of auditory feedback in the control of vocalization in the White-crowned Sparrow. Z Tierpsychol 770–783, 1965 [PubMed] [Google Scholar]

661. Konishi M. The role of auditory feedback in birdsong. Ann NY Acad Sci 1016: 463–475, 2004 [PubMed] [Google Scholar]

662. Kopasz M, Loessl B, Hornyak M, Riemann D, Nissen C, Piosczyk H, Voderholzer U. Sleep and memory in healthy children and adolescents: a critical review. Sleep Med Rev 14: 167–177, 2010 [PubMed] [Google Scholar]

663. Kopp C, Albrecht U, Zheng B, Tobler I. Homeostatic sleep regulation is preserved in mPer1 and mPer2 mutant mice. Eur J Neurosci 16: 1099–1106, 2002 [PubMed] [Google Scholar]

664. Korman M, Doyon J, Doljansky J, Carrier J, Dagan Y, Karni A. Daytime sleep condenses the time course of motor memory consolidation. Nat Neurosci 10: 1206–1213, 2007 [PubMed] [Google Scholar]

665. Korman M, Raz N, Flash T, Karni A. Multiple shifts in the representation of a motor sequence during the acquisition of skilled performance. Proc Natl Acad Sci USA 100: 12492–12497, 2003 [PMC free article] [PubMed] [Google Scholar]

666. Korz V, Frey JU. Stress-related modulation of hippocampal long-term potentiation in rats: involvement of adrenal steroid receptors. J Neurosci 23: 7281–7287, 2003 [PMC free article] [PubMed] [Google Scholar]

667. Koulack D. Recognition memory, circadian rhythms, sleep. Percept Mot Skills 85: 99–104, 1997 [PubMed] [Google Scholar]

669. Krech D, Rosenzweig MR, Bennet EL. Relations between chemistry and problem-solving among rats raised in enriched and impoverished environments. J Comp Physiol Psychol 55: 801–807, 1962 [PubMed] [Google Scholar]

670. Krosigk von M, Bal T, McCormick DA. Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261: 361–364, 1993 [PubMed] [Google Scholar]

671. Krueger JM, Obal F, Fang JD. Humoral regulation of physiological sleep: cytokines and GHRH. J Sleep Res 8: 53–59, 1999 [PubMed] [Google Scholar]

672. Krueger JM, Rector DM, Roy S, van Dongen HPA, Belenky G, Panksepp J. Sleep as a fundamental property of neuronal assemblies. Nat Rev Neurosci 9: 910–919, 2008 [PMC free article] [PubMed] [Google Scholar]

673. Kudrimoti HS, Barnes CA, McNaughton BL. Reactivation of hippocampal cell assemblies: effects of behavioral state, experience, and EEG dynamics. J Neurosci 19: 4090–4101, 1999 [PMC free article] [PubMed] [Google Scholar]

674. Kuhl BA, Shah AT, DuBrow S, Wagner AD. Resistance to forgetting associated with hippocampus-mediated reactivation during new learning. Nat Neurosci 13: 501–506, 2010 [PMC free article] [PubMed] [Google Scholar]

675. Kulla A, Manahan-Vaughan D. Modulation by serotonin 5-HT(4) receptors of long-term potentiation and depotentiation in the dentate gyrus of freely moving rats. Cereb Cortex 12: 150–162, 2002 [PubMed] [Google Scholar]

676. Kumar T, Jha SK. Sleep deprivation impairs consolidation of cued fear memory in rats. PLoS One 7: e47042, 2012 [PMC free article] [PubMed] [Google Scholar]

677. Kuo MC, Dringenberg HC. Histamine facilitates in vivo thalamocortical long-term potentiation in the mature visual cortex of anesthetized rats. Eur J Neurosci 27: 1731–1738, 2008 [PubMed] [Google Scholar]

678. Kuriyama K, Soshi T, Kim Y. Sleep deprivation facilitates extinction of implicit fear generalization and physiological response to fear. Biol Psychiatry 68: 991–998, 2010 [PubMed] [Google Scholar]

679. Kuriyama K, Stickgold R, Walker MP. Sleep-dependent learning and motor-skill complexity. Learn Mem 11: 705–713, 2004 [PMC free article] [PubMed] [Google Scholar]

680. Kurth S, Ringli M, Geiger A, LeBourgeois M, Jenni OG, Huber R. Mapping of cortical activity in the first two decades of life: a high-density sleep electroencephalogram study. J Neurosci 30: 13211–13219, 2010 [PMC free article] [PubMed] [Google Scholar]

681. Kyriacou CP, Hastings MH. Circadian clocks: genes, sleep, cognition. Trends Cogn Sci 14: 259–267, 2010 [PubMed] [Google Scholar]

682. Lahl O, Wispel C, Willigens B, Pietrowsky R. An ultra short episode of sleep is sufficient to promote declarative memory performance. J Sleep Res 17: 3–10, 2008 [PubMed] [Google Scholar]

683. Lamsa KP, Kullmann DM, Woodin MA. Spike-timing dependent plasticity in inhibitory circuits. Front Synaptic Neurosci 2: 8, 2010 [PMC free article] [PubMed] [Google Scholar]

684. Lancel M. Role of GABAA receptors in the regulation of sleep: initial sleep responses to peripherally administered modulators and agonists. Sleep 22: 33–42, 1999 [PubMed] [Google Scholar]

685. Lancel M, Faulhaber J. The GABAA agonist THIP (gaboxadol) increases non-REM sleep and enhances delta activity in the rat. Neuroreport 7: 2241–2245, 1996 [PubMed] [Google Scholar]

686. Lancel M, Faulhaber J, Deisz RA. Effect of the GABA uptake inhibitor tiagabine on sleep and EEG power spectra in the rat. Br J Pharmacol 123: 1471–1477, 1998 [PMC free article] [PubMed] [Google Scholar]

687. Landfield PW, McGaugh JL, Tusa RJ. Theta rhythm: a temporal correlate of memory storage processes in the rat. Science 175: 87–89, 1972 [PubMed] [Google Scholar]

688. Landolt H. Sleep homeostasis: a role for adenosine in humans? Biochem Pharmacol 75: 2070–2079, 2008 [PubMed] [Google Scholar]

689. Landolt H. Genetic determination of sleep EEG profiles in healthy humans. Prog Brain Res 193: 51–61, 2011 [PubMed] [Google Scholar]

690. Landolt HP, Dijk DJ, Achermann P, Borbély AA. Effect of age on the sleep EEG: slow-wave activity and spindle frequency activity in young and middle-aged men. Brain Res 738: 205–212, 1996 [PubMed] [Google Scholar]

691. Landsness EC, Crupi D, Hulse BK, Peterson MJ, Huber R, Ansari H, Coen M, Cirelli C, Benca RM, Ghilardi MF, Tononi G. Sleep-dependent improvement in visuomotor learning: a causal role for slow waves. Sleep 32: 1273–1284, 2009 [PMC free article] [PubMed] [Google Scholar]

692. Landsness EC, Ferrarelli F, Sarasso S, Goldstein MR, Riedner BA, Cirelli C, Perfetti B, Moisello C, Ghilardi MF, Tononi G. Electrophysiological traces of visuomotor learning and their renormalization after sleep. Clin Neurophysiol 2011 [PMC free article] [PubMed] [Google Scholar]

693. Lange T, Born J. The immune recovery function of sleep–tracked by neutrophil counts. Brain Behav Immun 25: 14–15, 2011 [PubMed] [Google Scholar]

694. Lange T, Dimitrov S, Bollinger T, Diekelmann S, Born J. Sleep after vaccination boosts immunological memory. J Immunol 187: 283–290, 2011 [PubMed] [Google Scholar]

695. Lange T, Dimitrov S, Born J. Effects of sleep and circadian rhythm on the human immune system. Ann NY Acad Sci 1193: 48–59, 2010 [PubMed] [Google Scholar]

696. Lange T, Dimitrov S, Fehm H, Westermann J, Born J. Shift of monocyte function toward cellular immunity during sleep. Arch Intern Med 166: 1695–1700, 2006 [PubMed] [Google Scholar]

697. Lange T, Perras B, Fehm HL, Born J. Sleep enhances the human antibody response to hepatitis A vaccination. Psychosom Med 65: 831–835, 2003 [PubMed] [Google Scholar]

698. Langella M, Colarieti L, Ambrosini MV, Giuditta A. The sequential hypothesis of sleep function. IV. A correlative analysis of sleep variables in learning and nonlearning rats. Physiol Behav 51: 227–238, 1992 [PubMed] [Google Scholar]

699. Lansink CS, Goltstein PM, Lankelma JV, Joosten RNJMA, McNaughton BL, Pennartz CMA. Preferential reactivation of motivationally relevant information in the ventral striatum. J Neurosci 28: 6372–6382, 2008 [PMC free article] [PubMed] [Google Scholar]

700. Lansink CS, Goltstein PM, Lankelma JV, McNaughton BL, Pennartz CMA. Hippocampus leads ventral striatum in replay of place-reward information. PLoS Biol 7: e1000173, 2009 [PMC free article] [PubMed] [Google Scholar]

701. Lanté F, Toledo-Salas J, Ondrejcak T, Rowan MJ, Ulrich D. Removal of synaptic Ca2+-permeable AMPA receptors during sleep. J Neurosci 31: 3953–3961, 2011 [PMC free article] [PubMed] [Google Scholar]

702. Lapierre O, Montplaisir J, Lamarre M, Bedard MA. The effect of gamma-hydroxybutyrate on nocturnal and diurnal sleep of normal subjects: further considerations on REM sleep-triggering mechanisms. Sleep 13: 24–30, 1990 [PubMed] [Google Scholar]

703. Laposky A, Easton A, Dugovic C, Walisser J, Bradfield C, Turek F. Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep 28: 395–409, 2005 [PubMed] [Google Scholar]

704. Lara-Carrasco J, Nielsen TA, Solomonova E, Levrier K, Popova A. Overnight emotional adaptation to negative stimuli is altered by REM sleep deprivation and is correlated with intervening dream emotions. J Sleep Res 18: 178–187, 2009 [PubMed] [Google Scholar]

705. Lau H, Alger SE, Fishbein W. Relational memory: a daytime nap facilitates the abstraction of general concepts. PLoS One 6: e27139, 2011 [PMC free article] [PubMed] [Google Scholar]

706. Lau H, Tucker MA, Fishbein W. Daytime napping: Effects on human direct associative and relational memory. Neurobiol Learn Mem 93: 554–560, 2010 [PubMed] [Google Scholar]

707. Laureys S, Peigneux P, Phillips C, Fuchs S, Degueldre C, Aerts J, Del Fiore G, Petiau C, Luxen A, van der Linden M, Cleeremans A, Smith C, Maquet P. Experience-dependent changes in cerebral functional connectivity during human rapid eye movement sleep. Neuroscience 105: 521–525, 2001 [PubMed] [Google Scholar]

708. Lecas JC. Changes in paradoxical sleep accompanying instrumental learning in the cat. Neurosci Lett 3: 349–355, 1976 [PubMed] [Google Scholar]

709. Lechner HA, Squire LR, Byrne JH. 100 years of consolidation–remembering Müller and Pilzecker. Learn Mem 6: 77–87, 1999 [PubMed] [Google Scholar]

710. Leconte P, Bloch V. Déficit de la rétention d'un conditionnement après privation de sommeil paradoxal chez le rat. CR Acad Sci D Nat 271: 226–229, 1970 [PubMed] [Google Scholar]

711. Leconte P, Hennevin E. Temporal characteristics of the augmentation of paradoxical sleep following learning in the rat. Physiol Behav 677–686, 1973 [PubMed] [Google Scholar]

712. Leconte P, Hennevin E. Post-learning paradoxical sleep, reticular activation and noradrenergic activity. Physiol Behav 26: 587–594, 1981 [PubMed] [Google Scholar]

713. Leconte P, Hennevin E, Bloch V. An analysis of the effects of a learning task and its level of acquisition on subsequent paradoxical sleep. Brain Res: 367–379, 1973 [PubMed] [Google Scholar]

714. Leconte P, Hennevin E, Bloch V. Duration of paradoxical sleep necessary for the acquisition of conditioned avoidance in the rat. Physiol Behav 13: 675–681, 1974 [PubMed] [Google Scholar]

715. Lee AK, Wilson MA. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36: 1183–1194, 2002 [PubMed] [Google Scholar]

716. Lee AK, Wilson MA. A combinatorial method for analyzing sequential firing patterns involving an arbitrary number of neurons based on relative time order. J Neurophysiol 92: 2555–2573, 2004 [PubMed] [Google Scholar]

717. Lee J, Kim D, Shin H. Lack of delta waves and sleep disturbances during non-rapid eye movement sleep in mice lacking alpha1G-subunit of T-type calcium channels. Proc Natl Acad Sci USA 101: 18195–18199, 2004 [PMC free article] [PubMed] [Google Scholar]

719. Legault G, Delay S, Madore A. Identification of a rapid eye movement sleep window for learning of the win-shift radial arm maze task for male Sprague-Dawley rats. J Sleep Res 19: 508–515, 2010 [PubMed] [Google Scholar]

720. Legault G, Smith CT, Beninger RJ. Scopolamine during the paradoxical sleep window impairs radial arm maze learning in rats. Pharmacol Biochem Behav 79: 715–721, 2004 [PubMed] [Google Scholar]

721. Legault G, Smith CT, Beninger RJ. Post-training intra-striatal scopolamine or flupenthixol impairs radial maze learning in rats. Behav Brain Res 170: 148–155, 2006 [PubMed] [Google Scholar]

722. Lehn H, Steffenach HA, van Strien NM, Veltman DJ, Witter MP, Haberg AK. A specific role of the human hippocampus in recall of temporal sequences. J Neurosci 29: 3475–3484, 2009 [PMC free article] [PubMed] [Google Scholar]

723. Leibold C, Kempter R. Memory capacity for sequences in a recurrent network with biological constraints. Neural Comput 18: 904–941, 2006 [PubMed] [Google Scholar]

724. Lena I, Parrot S, Deschaux O, Muffat-Joly S, Sauvinet V, Renaud B, Suaud-Chagny MF, Gottesmann C. Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J Neurosci Res 81: 891–899, 2005 [PubMed] [Google Scholar]

725. Lesku JA, Roth TC, Rattenborg NC, Amlaner CJ, Lima SL. Phylogenetics and the correlates of mammalian sleep: a reappraisal. Sleep Med Rev 12: 229–244, 2008 [PubMed] [Google Scholar]

726. Lesku JA, Vyssotski AL, Martinez-Gonzalez D, Wilzeck C, Rattenborg NC. Local sleep homeostasis in the avian brain: convergence of sleep function in mammals and birds? Proc Biol Sci 278: 2419–2428, 2011 [PMC free article] [PubMed] [Google Scholar]

727. Lestienne R, Herve-Minvielle A, Robinson D, Briois L, Sara SJ. Slow oscillations as a probe of the dynamics of the locus coeruleus-frontal cortex interaction in anesthetized rats. J Physiol 91: 273–284, 1997 [PubMed] [Google Scholar]

728. Lesting J, Narayanan RT, Kluge C, Sangha S, Seidenbecher T, Pape H. Patterns of coupled theta activity in amygdala-hippocampal-prefrontal cortical circuits during fear extinction. PLoS One 6: e21714, 2011 [PMC free article] [PubMed] [Google Scholar]

729. Lewin I, Glaubman H. The effect of REM deprivation: is it detrimental, beneficial, or neutral? Psychophysiology 12, 1975 [PubMed] [Google Scholar]

730. Lewin I, Gombosh D. Increase in REM time as a function of the need for divergent thinking. In: Sleep: Physiology, Biochemistry, Psychology, Pharmacology, Clinical Implications, edited by Levin PKW. Basel: Karger, 1973, p. 399–403 [Google Scholar]

731. Lewis DJ. Psychobiology of active and inactive memory. Psychol Bull 86: 1054–1083, 1979 [PubMed] [Google Scholar]

732. Lewis PA, Cairney S, Manning L, Critchley HD. The impact of overnight consolidation upon memory for emotional and neutral encoding contexts. Neuropsychologia 49: 2619–2629, 2011 [PubMed] [Google Scholar]

733. Lewis PA, Couch TJ, Walker MP. Keeping time in your sleep: overnight consolidation of temporal rhythm. Neuropsychologia 49: 115–123, 2011 [PubMed] [Google Scholar]

734. Lewis PA, Durrant SJ. Overlapping memory replay during sleep builds cognitive schemata. Trends Cogn Sci 2011 [PubMed] [Google Scholar]

735. Lindsay S, Gaskell MG. Lexical integration of novel words without sleep. J Exp Psychol Learn 2012 [PubMed] [Google Scholar]

736. Linkowski P. EEG sleep patterns in twins. J Sleep Res 8 Suppl 1: 11–13, 1999 [PubMed] [Google Scholar]

737. Linkowski P, Kerkhofs M, Hauspie R, Susanne C, Mendlewicz J. EEG sleep patterns in man: a twin study. Electroencephalogr Clin Neurophysiol 73: 279–284, 1989 [PubMed] [Google Scholar]

738. Linkowski P, Kerkhofs M, van Cauter E. Sleep and biological rhythms in man: a twin study. Clin Neuropharmacol 15 Suppl 1: 42A–43A, 1992 [PubMed] [Google Scholar]

739. Liu X, Ramirez S, Pang PT, Puryear CB, Govindarajan A, Deisseroth K, Tonegawa S. Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484: 381–385, 2012 [PMC free article] [PubMed] [Google Scholar]

740. Liu Z, Faraguna U, Cirelli C, Tononi G, Gao X. Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. J Neurosci 30: 8671–8675, 2010 [PMC free article] [PubMed] [Google Scholar]

741. Liu Z, Gao X. Adenosine inhibits activity of hypocretin/orexin neurons by the A1 receptor in the lateral hypothalamus: a possible sleep-promoting effect. J Neurophysiol 97: 837–848, 2007 [PMC free article] [PubMed] [Google Scholar]

742. Lopes AC, Romcy-Pereira RN, Escorsim SR, Galvis-Alonso OY, Anselmo-Franci JA, Pereira LJ. Muscarinic acetylcholine neurotransmission enhances the late-phase of long-term potentiation in the hippocampal-prefrontal cortex pathway of rats in vivo: a possible involvement of monoaminergic systems. Neuroscience 153: 1309–1319, 2008 [PubMed] [Google Scholar]

743. Lopez J, Roffwarg HP, Dreher A, Bissette G, Karolewicz B, Shaffery JP. Rapid eye movement sleep deprivation decreases long-term potentiation stability and affects some glutamatergic signaling proteins during hippocampal development. Neuroscience 153: 44–53, 2008 [PMC free article] [PubMed] [Google Scholar]

744. Louie K, Wilson MA. Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29: 145–156, 2001 [PubMed] [Google Scholar]

745. Lovatt D, Warr PB. Recall after sleep. Am J Psychol 81: 253–257, 1968 [PubMed] [Google Scholar]

746. Lu Y, Christian K, Lu B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem 89: 312–323, 2008 [PMC free article] [PubMed] [Google Scholar]

747. Lucero MA. Lengthening of REM sleep duration consecutive to learning in the rat. Brain Res 20: 319–322, 1970 [PubMed] [Google Scholar]

748. Luczak A, Barthó P, Marguet SL, Buzsáki G, Harris KD. Sequential structure of neocortical spontaneous activity in vivo. Proc Natl Acad Sci USA 104: 347–352, 2007 [PMC free article] [PubMed] [Google Scholar]

749. Luna-Moreno D, Aguilar-Roblero R, Diaz-Munoz M. Restricted feeding entrains rhythms of inflammation-related factors without promoting an acute-phase response. Chronobiol Int 26: 1409–1429, 2009 [PubMed] [Google Scholar]

750. Luo T, Leung LS. Endogenous histamine facilitates long-term potentiation in the hippocampus during walking. J Neurosci 30: 7845–7852, 2010 [PMC free article] [PubMed] [Google Scholar]

751. Määttä S, Landsness E, Sarasso S, Ferrarelli F, Ferreri F, Ghilardi MF, Tononi G. The effects of morning training on night sleep: a behavioral and EEG study. Brain Res Bull 82: 118–123, 2010 [PMC free article] [PubMed] [Google Scholar]

752. Mackiewicz M, Naidoo N, Zimmerman JE, Pack AI. Molecular mechanisms of sleep and wakefulness. Ann NY Acad Sci 1129: 335–349, 2008 [PubMed] [Google Scholar]

753. Mackiewicz M, Shockley KR, Romer MA, Galante RJ, Zimmerman JE, Naidoo N, Baldwin DA, Jensen ST, Churchill GA, Pack AI. Macromolecule biosynthesis: a key function of sleep. Physiol Genomics 31: 441–457, 2007 [PubMed] [Google Scholar]

754. Magloire V, Cattarelli M. Delayed changes of sleep duration after rewarded olfactory discrimination learning in the rat. Behav Brain Res 205: 568–571, 2009 [PubMed] [Google Scholar]

755. Maho C, Hennevin E. Appetitive conditioning-induced plasticity is expressed during paradoxical sleep in the medial geniculate, but not in the lateral amygdala. Behav Neurosci 116: 807–823, 2002 [PubMed] [Google Scholar]

756. Maho C, Hennevin E, Hars B, Poincheval S. Evocation in paradoxical sleep of a hippocampal conditioned cellular response acquired during waking. Psychobiology 19: 193–205, 1991 [Google Scholar]

757. Maloney KJ, Mainville L, Jones BE. c-Fos expression in dopaminergic and GABAergic neurons of the ventral mesencephalic tegmentum after paradoxical sleep deprivation and recovery. Eur J Neurosci 15: 774–778, 2002 [PubMed] [Google Scholar]

758. Mandai O, Guerrien A, Sockeel P, Dujardin K. REM sleep modifications following a Morse code learning session in humans. Physiol Behav 46: 639–642, 1989 [PubMed] [Google Scholar]

759. Mander BA, Santhanam S, Saletin JM, Walker MP. Wake deterioration and sleep restoration of human learning. Curr Biol 21: R183–184, 2011 [PMC free article] [PubMed] [Google Scholar]

760. Mandile P, Vescia S, Montagnese P, Piscopo S, Cotugno M, Giuditta A. Post-trial sleep sequences including transition sleep are involved in avoidance learning of adult rats. Behav Brain Res 112: 23–31, 2000 [PubMed] [Google Scholar]

761. Manns JR, Howard MW, Eichenbaum H. Gradual changes in hippocampal activity support remembering the order of events. Neuron 56: 530–540, 2007 [PMC free article] [PubMed] [Google Scholar]

762. Manoach DS, Cain MS, Vangel MG, Khurana A, Goff DC, Stickgold R. A failure of sleep-dependent procedural learning in chronic, medicated schizophrenia. Biol Psychiatry 56: 951–956, 2004 [PubMed] [Google Scholar]

763. Manshanden I, Munck de JC, Simon NR, da Silva FH. Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms. Clin Neurophysiol 113: 1937–1947, 2002 [PubMed] [Google Scholar]

764. Maquet P. Functional neuroimaging of normal human sleep by positron emission tomography. J Sleep Res 9: 207–231, 2000 [PubMed] [Google Scholar]

765. Maquet P. The role of sleep in learning and memory. Science 294: 1048–1052, 2001 [PubMed] [Google Scholar]

766. Maquet P, Degueldre C, Delfiore G, Aerts J, Péters JM, Luxen A, Franck G. Functional neuroanatomy of human slow wave sleep. J Neurosci 17: 2807–2812, 1997 [PMC free article] [PubMed] [Google Scholar]

767. Maquet P, Laureys S, Peigneux P, Fuchs S, Petiau C, Phillips C, Aerts J, Del Fiore G, Degueldre C, Meulemans T, Luxen A, Franck G, van der Linden M, Smith C, Cleeremans A. Experience-dependent changes in cerebral activation during human REM sleep. Nat Neurosci 3: 831–836, 2000 [PubMed] [Google Scholar]

768. Maquet P, Peigneux P, Laureys S, Boly M, Dang-Vu T, Desseilles M, Cleeremans A. Memory processing during human sleep as assessed by functional neuroimaging. Rev Neurol 159: 6S27–6S29, 2003 [PubMed] [Google Scholar]

769. Maquet P, Phillips C. Functional brain imaging of human sleep. J Sleep Res 7 Suppl 1: 42–47, 1998 [PubMed] [Google Scholar]

770. Maquet P, Schwartz S, Passingham R, Frith C. Sleep-related consolidation of a visuomotor skill: brain mechanisms as assessed by functional magnetic resonance imaging. J Neurosci 23: 1432–1440, 2003 [PMC free article] [PubMed] [Google Scholar]

771. Maret S, Dorsaz S, Gurcel L, Pradervand S, Petit B, Pfister C, Hagenbuchle O, O'Hara BF, Franken P, Tafti M. Homer1a is a core brain molecular correlate of sleep loss. Proc Natl Acad Sci USA 104: 20090–20095, 2007 [PMC free article] [PubMed] [Google Scholar]

772. Maret S, Faraguna U, Nelson AB, Cirelli C, Tononi G. Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nat Neurosci 14: 1418–1420, 2011 [PMC free article] [PubMed] [Google Scholar]

773. Margoliash D. Sleep, learning, birdsong. ILAR J 51: 378–386, 2010 [PubMed] [Google Scholar]

774. Margoliash D, Schmidt MF. Sleep, off-line processing, and vocal learning. Brain Lang 115: 45–58, 2010 [PMC free article] [PubMed] [Google Scholar]

775. Margoliash D, van Drongelen W, Kohrman M. Introducing songbirds as a model system for epilepsy research. J Clin Neurophysiol 27: 433–437, 2010 [PubMed] [Google Scholar]

776. Marinelli L, Crupi D, Di RA, Bove M, Eidelberg D, Abbruzzese G, Ghilardi MF. Learning and consolidation of visuo-motor adaptation in Parkinson's disease. Parkinsonism Relat Dis 15: 6–11, 2009 [PMC free article] [PubMed] [Google Scholar]

777. Markram H, Lübke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275: 213–215, 1997 [PubMed] [Google Scholar]

778. Marks CA, Wayner MJ. Effects of sleep disruption on rat dentate granule cell LTP in vivo. Brain Res Bull 66: 114–119, 2005 [PubMed] [Google Scholar]

779. Marpegan L, Leone MJ, Katz ME, Sobrero PM, Bekinstein TA, Golombek DA. Diurnal variation in endotoxin-induced mortality in mice: correlation with proinflammatory factors. Chronobiol Int 26: 1430–1442, 2009 [PubMed] [Google Scholar]

780. Marr D. Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci 262: 23–81, 1971 [PubMed] [Google Scholar]

781. Marrone DF, Schaner MJ, McNaughton BL, Worley PF, Barnes CA. Immediate-early gene expression at rest recapitulates recent experience. J Neurosci 28: 1030–1033, 2008 [PMC free article] [PubMed] [Google Scholar]

782. Marshall L, Born J. The contribution of sleep to hippocampus-dependent memory consolidation. Trends Cogn Sci 11: 442–450, 2007 [PubMed] [Google Scholar]

783. Marshall L, Helgadóttir H, Mölle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature 444: 610–613, 2006 [PubMed] [Google Scholar]

784. Marshall L, Kirov R, Brade J, Mölle M, Born J. Transcranial electrical currents to probe EEG brain rhythms and memory consolidation during sleep in humans. PLoS One 6: e16905, 2011 [PMC free article] [PubMed] [Google Scholar]

785. Marshall L, Molle M, Hallschmid M, Born J. Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci 24: 9985–9992, 2004 [PMC free article] [PubMed] [Google Scholar]

786. Martin N, Lafortune M, Godbout J, Barakat M, Robillard R, Poirier G, Bastien C, Carrier J. Topography of age-related changes in sleep spindles. Neurobiol Aging 2012 [PubMed] [Google Scholar]

787. Martí-Nicolovius M, Portell-Cortés I, Morgado-Bernal I. Improvement of shuttle-box avoidance following post-training treatment in paradoxical sleep deprivation platforms in rats. Physiol Behav 43: 93–98, 1988 [PubMed] [Google Scholar]

788. Mascetti L, Foret A, Bourdiec AS, Muto V, Kussé C, Jaspar M, Matarazzo L, Dang-Vu T, Schabus M, Maquet P. Spontaneous neural activity during human non-rapid eye movement sleep. Prog Brain Res 193: 111–118, 2011 [PubMed] [Google Scholar]

789. Massey PV, Bashir ZI. Long-term depression: multiple forms and implications for brain function. Trends Neurosci 30: 176–184, 2007 [PubMed] [Google Scholar]

790. Massimini M, Amzica F. Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. J Neurophysiol 85: 1346–1350, 2001 [PubMed] [Google Scholar]

791. Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G. The sleep slow oscillation as a traveling wave. J Neurosci 24: 6862–6870, 2004 [PMC free article] [PubMed] [Google Scholar]

792. Massimini M, Rosanova M, Mariotti M. EEG slow (approximately 1 Hz) waves are associated with nonstationarity of thalamo-cortical sensory processing in the sleeping human. J Neurophysiol 89: 1205–1213, 2003 [PubMed] [Google Scholar]

793. Mathias S, Wetter TC, Steiger A, Lancel M. The GABA uptake inhibitor tiagabine promotes slow wave sleep in normal elderly subjects. Neurobiol Aging 22: 247–253, 2001 [PubMed] [Google Scholar]

794. Mavanji V, Datta S. Activation of the phasic pontine-wave generator enhances improvement of learning performance: a mechanism for sleep-dependent plasticity. Eur J Neurosci 17: 359–370, 2003 [PubMed] [Google Scholar]

795. Mavanji V, Siwek DF, Patterson EH, Spoley EE, Datta S. Effects of passive-avoidance training on sleep-wake state-specific activity in the basolateral and central nuclei of the amygdala. Behav Neurosci 117: 751–759, 2003 [PubMed] [Google Scholar]

796. Mazzoni G, Gori S, Formicola G, Gneri C, Massetani R, Murri L, Salzarulo P. Word recall correlates with sleep cycles in elderly subjects. J Sleep Res 8: 185–188, 1999 [PubMed] [Google Scholar]

797. Mazzotti DR, Guindalini C, Pellegrino R, Barrueco KF, Santos-Silva R, Bittencourt LRA, Tufik S. Effects of the adenosine deaminase polymorphism and caffeine intake on sleep parameters in a large population sample. Sleep 34: 399–402, 2011 [PMC free article] [PubMed] [Google Scholar]

798. Mazzotti DR, Guindalini C, Souza de AAL, Sato JR, Santos-Silva R, Bittencourt LRA, Tufik S. Adenosine deaminase polymorphism affects sleep EEG spectral power in a large epidemiological sample. PLoS One 7: e44154, 2012 [PMC free article] [PubMed] [Google Scholar]

799. McCabe BJ, Horn G. Learning and memory: regional changes in N-methyl-d-aspartate receptors in the chick brain after imprinting. Proc Natl Acad Sci USA 85: 2849–2853, 1988 [PMC free article] [PubMed] [Google Scholar]

800. McClelland JL, McNaughton BL, O'Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 102: 419–457, 1995 [PubMed] [Google Scholar]

801. McDermott CM, Hardy MN, Bazan NG, Magee JC. Sleep deprivation-induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus. J Physiol 570: 553–565, 2006 [PMC free article] [PubMed] [Google Scholar]

802. McDermott CM, LaHoste GJ, Chen C, Musto A, Bazan NG, Magee JC. Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 23: 9687–9695, 2003 [PMC free article] [PubMed] [Google Scholar]

803. McGaugh JL. Memory–a century of consolidation. Science 287: 248–251, 2000 [PubMed] [Google Scholar]

804. McGaugh JL. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27: 1–28, 2004 [PubMed] [Google Scholar]

805. McGaugh JL, Gold PE. Modulation of memory by electrical stimulation of the brain. In: Neural Mechanisms of Learning and Memory, edited by Rosenzweig ML. Cambridge, MA: MIT Press, 1976 [Google Scholar]

806. McGeoch JA. Forgetting and the law of disuse. Psychol Rev 39: 352–370, 1932 [Google Scholar]

807. McGrath MJ, Cohen DB. REM sleep facilitation of adaptive waking behavior: a review of the literature. Psychol Bull 85: 24–57, 1978 [PubMed] [Google Scholar]

808. Mednick S, Nakayama K, Stickgold R. Sleep-dependent learning: A nap is as good as a night. Nat Neurosci 6: 697–698, 2003 [PubMed] [Google Scholar]

809. Mednick SC, Cai DJ, Shuman T, Anagnostaras S, Wixted JT. An opportunistic theory of cellular and systems consolidation. Trends Neurosci 34: 504–514, 2011 [PMC free article] [PubMed] [Google Scholar]

810. Mednick SC, Nakayama K, Cantero JL, Atienza M, Levin AA, Pathak N, Stickgold R. The restorative effect of naps on perceptual deterioration. Nat Neurosci 5: 677–681, 2002 [PubMed] [Google Scholar]

811. Meienberg P. The tonic aspects of human REM sleep during long-term intensive verbal learning. Physiol Psychol 5: 250–256, 1977 [Google Scholar]

812. Meier-Koll A, Bussmann B, Schmidt C, Neuschwander D. Walking through a maze alters the architecture of sleep. Percept Mot Skills 88: 1141–1159, 1999 [PubMed] [Google Scholar]

813. Melendez J, Galli I, Boric K, Ortega A, Zuniga L, Henriquez-Roldan CF, Cardenas AM. Zolpidem and triazolam do not affect the nocturnal sleep-induced memory improvement. Psychopharmacology 181: 21–26, 2005 [PubMed] [Google Scholar]

814. Mellado M, Llorente M, Rodriguez-Frade JM, Lucas P, Martinez C, del Real G. HIV-1 envelope protein gp120 triggers a Th2 response in mice that shifts to Th2 in the presence of human growth hormone. Vaccine 16: 1111–1115, 1998 [PubMed] [Google Scholar]

815. Mendelsohn D, Riedel WJ, Sambeth A. Effects of acute tryptophan depletion on memory, attention and executive functions: a systematic review. Neurosci Biobehav Rev 33: 926–952, 2009 [PubMed] [Google Scholar]

816. Mendonça de A, Sebastião AM, Ribeiro JA. Adenosine: does it have a neuroprotective role after all? Brain Res 33: 258–274, 2000 [PubMed] [Google Scholar]

818. Merica H, Gaillard J. Statistical description and evaluation of the interrelationships of standard sleep variables for normal subjects. Sleep 8: 261–273, 1985 [PubMed] [Google Scholar]

819. Metzger M, Jiang S, Braun K. Organization of the dorsocaudal neostriatal complex: a retrograde and anterograde tracing study in the domestic chick with special emphasis on pathways relevant to imprinting. J Comp Neurol 395: 380–404, 1998 [PubMed] [Google Scholar]

820. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24: 167–202, 2001 [PubMed] [Google Scholar]

821. Miller L, Drew WG, Schwartz I. Effect of REM sleep deprivation on retention of a one-trial passive avoidance response. Percept Mot Skills 33: 118, 1971 [PubMed] [Google Scholar]

822. Milner CE, Fogel SM, Cote KA. Habitual napping moderates motor performance improvements following a short daytime nap. Biol Psychol 73: 141–156, 2006 [PubMed] [Google Scholar]

823. Mirmiran M, van den Dungen H, Uylings HB. Sleep patterns during rearing under different environmental conditions in juvenile rats. Brain Res 233: 287–298, 1982 [PubMed] [Google Scholar]

824. Miyauchi S, Misaki M, Kan S, Fukunaga T, Koike T. Human brain activity time-locked to rapid eye movements during REM sleep. Exp Brain Res 192: 657–667, 2009 [PubMed] [Google Scholar]

825. Mohajerani MH, McVea DA, Fingas M, Murphy TH. Mirrored bilateral slow-wave cortical activity within local circuits revealed by fast bihemispheric voltage-sensitive dye imaging in anesthetized and awake mice. J Neurosci 30: 3745–3751, 2010 [PMC free article] [PubMed] [Google Scholar]

826. Mölle M, Bergmann TO, Marshall L, Born J. Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep 34: 1411–1421, 2011 [PMC free article] [PubMed] [Google Scholar]

827. Mölle M, Born J. Hippocampus whispering in deep sleep to prefrontal cortex–for good memories? Neuron 61: 496–498, 2009 [PubMed] [Google Scholar]

828. Mölle M, Born J. Slow oscillations orchestrating fast oscillations and memory consolidation. Prog Brain Res 193: 93–110, 2011 [PubMed] [Google Scholar]

829. Mölle M, Eschenko O, Gais S, Sara SJ, Born J. The influence of learning on sleep slow oscillations and associated spindles and ripples in humans and rats. Eur J Neurosci 29: 1071–1081, 2009 [PubMed] [Google Scholar]

830. Mölle M, Marshall L, Gais S, Born J. Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci 22: 10941–10947, 2002 [PMC free article] [PubMed] [Google Scholar]

831. Mölle M, Marshall L, Gais S, Born J. Learning increases human electroencephalographic coherence during subsequent slow sleep oscillations. Proc Natl Acad Sci USA 101: 13963–13968, 2004 [PMC free article] [PubMed] [Google Scholar]

832. Mölle M, Yeshenko O, Marshall L, Sara SJ, Born J. Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep. J Neurophysiol 96: 62–70, 2006 [PubMed] [Google Scholar]

833. Mongrain V, Hernandez SA, Pradervand S, Dorsaz S, Curie T, Hagiwara G, Gip P, Heller HC, Franken P. Separating the contribution of glucocorticoids and wakefulness to the molecular and electrophysiological correlates of sleep homeostasis. Sleep 33: 1147–1157, 2010 [PMC free article] [PubMed] [Google Scholar]

834. Montgomery SM, Sirota A, Buzsaki G. Theta and gamma coordination of hippocampal networks during waking and rapid eye movement sleep. J Neurosci 28: 6731–6741, 2008 [PMC free article] [PubMed] [Google Scholar]

835. Morgan PT, Kehne JH, Sprenger KJ, Malison RT. Retrograde effects of triazolam and zolpidem on sleep-dependent motor learning in humans. J Sleep Res 19: 157–164, 2010 [PubMed] [Google Scholar]

836. Morgan PT, Malison RT. Pilot study of lorazepam and tiagabine effects on sleep, motor learning, and impulsivity in cocaine abstinence. Am J Drug Alcohol Abuse 34: 692–702, 2008 [PubMed] [Google Scholar]

837. Morin A, Doyon J, Dostie V, Barakat M, Hadj Tahar A, Korman M, Benali H, Karni A, Ungerleider LG, Carrier J. Motor sequence learning increases sleep spindles and fast frequencies in post-training sleep. Sleep 31: 1149–1156, 2008 [PMC free article] [PubMed] [Google Scholar]

838. Morishita H, Hensch TK. Critical period revisited: impact on vision. Curr Opin Neurobiol 18: 101–107, 2008 [PubMed] [Google Scholar]

839. Morris RGM, Inglis J, Ainge JA, Olverman HJ, Tulloch J, Dudai Y, Kelly PAT. Memory reconsolidation: sensitivity of spatial memory to inhibition of protein synthesis in dorsal hippocampus during encoding and retrieval. Neuron 50: 479–489, 2006 [PubMed] [Google Scholar]

840. Müller GPA. Experimentelle Beiträge zur Lehre vom Gedächtnis. Z Psychol 1–300, 1900 [Google Scholar]

841. Murphy M, Riedner BA, Huber R, Massimini M, Ferrarelli F, Tononi G. Source modeling sleep slow waves. Proc Natl Acad Sci USA 106: 1608–1613, 2009 [PMC free article] [PubMed] [Google Scholar]

842. Myhrer T. Neurotransmitter systems involved in learning and memory in the rat: a meta-analysis based on studies of four behavioral tasks. Brain Res 41: 268–287, 2003 [PubMed] [Google Scholar]

843. Nádasdy Z, Hirase H, Czurkó A, Csicsvari J, Buzsáki G. Replay and time compression of recurring spike sequences in the hippocampus. J Neurosci 19: 9497–9507, 1999 [PMC free article] [PubMed] [Google Scholar]

844. Nader K, Hardt O. A single standard for memory: the case for reconsolidation. Nat Rev Neurosci 10: 224–234, 2009 [PubMed] [Google Scholar]

845. Nader K, Schafe GE, LeDoux JE. The labile nature of consolidation theory. Nat Rev Neurosci 1: 216–219, 2000 [PubMed] [Google Scholar]

846. Nader R, Smith C. A role for stage 2 sleep in memory processing. In: Sleep and Brain Plasticity, edited by Maquet P, Smith C. New York: Oxford Univ. Press, 2003, p. 87–98 [Google Scholar]

847. Nader RS, Smith CT. The relationship between Stage 2 sleep spindles and intelligence. Sleep 24: A160, 2001 [Google Scholar]

848. Nakanishi H, Sun Y, Nakamura RK, Mori K, Ito M, Suda S, Namba H, Storch FI, Dang TP, Mendelson W, Mishkin M, Kennedy C, Gillin JC, Smith CB, Sokoloff L. Positive correlations between cerebral protein synthesis rates and deep sleep in Macaca mulatta. Eur J Neurosci 9: 271–279, 1997 [PubMed] [Google Scholar]

849. Nakashiba T, Buhl DL, McHugh TJ, Tonegawa S. Hippocampal CA3 output is crucial for ripple-associated reactivation and consolidation of memory. Neuron 62: 781–787, 2009 [PMC free article] [PubMed] [Google Scholar]

850. Navakkode S, Sajikumar S, Sacktor TC, Frey JU. Protein kinase Mzeta is essential for the induction and maintenance of dopamine-induced long-term potentiation in apical CA1 dendrites. Learn Mem 17: 605–611, 2010 [PMC free article] [PubMed] [Google Scholar]

851. Naylor E, Bergmann BM, Krauski K, Zee PC, Takahashi JS, Vitaterna MH, Turek FW. The circadian clock mutation alters sleep homeostasis in the mouse. J Neurosci 20: 8138–8143, 2000 [PMC free article] [PubMed] [Google Scholar]

852. Nemeth D, Janacsek K, Londe Z, Ullman MT, Howard DV, Howard JH, JR Sleep has no critical role in implicit motor sequence learning in young and old adults. Exp Brain Res 201: 351–358, 2010 [PubMed] [Google Scholar]

853. Nesca M, Koulack D. Recognition memory sleep. Can J Exp Psychol 359–379, 1994 [PubMed] [Google Scholar]

854. Newman EA, Evans CR. Human dream processes as analogous to computer programme clearance. Nature 206: 534, 1965 [PubMed] [Google Scholar]

855. Newman EB. Forgetting of meaningful material during sleep and waking. Am J Psychol 65–71, 1939 [Google Scholar]

856. Nick TA, Konishi M. Neural auditory selectivity develops in parallel with song. J Neurobiol 62: 469–481, 2005 [PubMed] [Google Scholar]

857. Nick TA, Konishi M. Neural song preference during vocal learning in the zebra finch depends on age and state. J Neurobiol 62: 231–242, 2005 [PubMed] [Google Scholar]

858. Nicol AU, Brown MW, Horn G. Short communication: hippocampal neuronal activity and imprinting in the behaving domestic chick. Eur J Neurosci 10: 2738–2741, 1998 [PubMed] [Google Scholar]

859. Nir Y, Staba RJ, Andrillon T, Vyazovskiy VV, Cirelli C, Fried I, Tononi G. Regional slow waves and spindles in human sleep. Neuron 70: 153–169, 2011 [PMC free article] [PubMed] [Google Scholar]

860. Nishida M, Hirai N, Miwakeichi F, Maehara T, Kawai K, Shimizu H, Uchida S. Theta oscillation in the human anterior cingulate cortex during all-night sleep: an electrocorticographic study. Neurosci Res 50: 331–341, 2004 [PubMed] [Google Scholar]

861. Nishida M, Pearsall J, Buckner RL, Walker MP. REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex 19: 1158–1166, 2009 [PMC free article] [PubMed] [Google Scholar]

862. Nishida M, Walker MP. Daytime naps, motor memory consolidation and regionally specific sleep spindles. PLoS One 2: e341, 2007 [PMC free article] [PubMed] [Google Scholar]

863. Nissen C, Kloepfer C, Nofzinger EA, Feige B, Voderholzer U, Riemann D. Impaired sleep-related memory consolidation in primary insomnia–a pilot study. Sleep 29: 1068–1073, 2006 [PubMed] [Google Scholar]

864. Nissen C, Power AE, Nofzinger EA, Feige B, Voderholzer U, Kloepfer C, Waldheim B, Radosa M, Berger M, Riemann D. M1 muscarinic acetylcholine receptor agonism alters sleep without affecting memory consolidation. J Cogn Neurosci 18: 1799–1807, 2006 [PubMed] [Google Scholar]

865. O'Neill J, Pleydell-Bouverie B, Dupret D, Csicsvari J. Play it again: reactivation of waking experience and memory. Trends Neurosci 33: 220–229, 2010 [PubMed] [Google Scholar]

866. Ohayon MM, Carskadon MA, Guilleminault C, Vitiello MV. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27: 1255–1273, 2004 [PubMed] [Google Scholar]

867. Oishi Y, Huang ZL, Fredholm BB, Urade Y, Hayaishi O. Adenosine in the tuberomammillary nucleus inhibits the histaminergic system via A1 receptors and promotes non-rapid eye movement sleep. Proc Natl Acad Sci USA 105: 19992–19997, 2008 [PMC free article] [PubMed] [Google Scholar]

868. O'Keefe J, Nadel L, Willner J. Tuning out irrelevancy? Comments on Solomon's temporal mapping view of the hippocampus. Psychol Bull 86: 1280–1289, 1979 [PubMed] [Google Scholar]

869. Olcese U, Esser SK, Tononi G. Sleep and synaptic renormalization: a computational study. J Neurophysiol 104: 3476–3493, 2010 [PMC free article] [PubMed] [Google Scholar]

870. O'Neill J, Senior T, Csicsvari J. Place-selective firing of ca1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior. Neuron 49: 143–155, 2006 [PubMed] [Google Scholar]

871. O'Neill J, Senior TJ, Allen K, Huxter JR, Csicsvari J. Reactivation of experience-dependent cell assembly patterns in the hippocampus. Nat Neurosci 11: 209–215, 2008 [PubMed] [Google Scholar]

872. Oniani TN, Lortkipanidze ND, Maisuradze LM. Interaction between learning and paradoxical sleep in cats. Neurosci Behav Physiol 17: 304–310, 1987 [PubMed] [Google Scholar]

873. Orban P, Rauchs G, Balteau E, Degueldre C, Luxen A, Maquet P, Peigneux P, Raichle ME. Sleep after spatial learning promotes covert reorganization of brain activity. Proc Natl Acad Sci USA 103: 7124–7129, 2006 [PMC free article] [PubMed] [Google Scholar]

874. Osland TM, Bjorvatn B, Steen VM, Pallesen S. Association study of a variable-number tandem repeat polymorphism in the clock gene PERIOD3 and chronotype in Norwegian university students. Chronobiol Int 28: 764–770, 2011 [PubMed] [Google Scholar]

875. Oswald I. Sleep as restorative process: human clues. Prog Brain Res 53: 279–288, 1980 [PubMed] [Google Scholar]

876. Ottaway CA, Husband AJ. Central nervous system influences on lymphocyte migration. Brain Behav Immun 6: 97–116, 1992 [PubMed] [Google Scholar]

877. Ozcan M, Yilmaz B, Carpenter DO. Effects of melatonin on synaptic transmission and long-term potentiation in two areas of mouse hippocampus. Brain Res 1111: 90–94, 2006 [PubMed] [Google Scholar]

878. Pace-Schott EF, Milad MR, Orr SP, Rauch SL, Stickgold R, Pitman RK. Sleep promotes generalization of extinction of conditioned fear. Sleep 32: 19–26, 2009 [PMC free article] [PubMed] [Google Scholar]

879. Pace-Schott EF, Shepherd E, Spencer RMC, Marcello M, Tucker M, Propper RE, Stickgold R. Napping promotes inter-session habituation to emotional stimuli. Neurobiol Learn Mem 95: 24–36, 2011 [PMC free article] [PubMed] [Google Scholar]

880. Pagel J, Pegram V, Vaughn S, Donaldson P, Bridgers W. The relationship of REM sleep with learning and memory in mice. Behav Biol 9: 383–388, 1973 [PubMed] [Google Scholar]

881. Palagini L, Campbell IG, Tan X, Guazzelli M, Feinberg I. Independence of sleep EEG responses to GABAergic hypnotics: biological implications. J Psychiatr Res 34: 293–300, 2000 [PubMed] [Google Scholar]

882. Palchykova S, Winsky-Sommerer R, Meerlo P, Dürr R, Tobler I. Sleep deprivation impairs object recognition in mice. Neurobiol Learn Mem 85: 263–271, 2006 [PubMed] [Google Scholar]

883. Paller KA, Voss JL. Memory reactivation and consolidation during sleep. Learn Mem 11: 664–670, 2004 [PMC free article] [PubMed] [Google Scholar]

884. Pan WJ, Osmanović SS, Shefner SA. Characterization of the adenosine A1 receptor-activated potassium current in rat locus ceruleus neurons. J Pharmacol Exp Ther 273: 537–544, 1995 [PubMed] [Google Scholar]

885. Panizzon MS, Lyons MJ, Jacobson KC, Franz CE, Grant MD, Eisen SA, Xian H, Kremen WS. Genetic architecture of learning and delayed recall: a twin study of episodic memory. Neuropsychology 25: 488–498, 2011 [PMC free article] [PubMed] [Google Scholar]

886. Papassotiropoulos A, Wollmer MA, Aguzzi A, Hock C, Nitsch RM, Quervain de DJ. The prion gene is associated with human long-term memory. Hum Mol Genet 14: 2241–2246, 2005 [PubMed] [Google Scholar]

887. Paré D, Collins DR, Pelletier JG. Amygdala oscillations and the consolidation of emotional memories. Trends Cogn Sci 6: 306–314, 2002 [PubMed] [Google Scholar]

888. Parker ES, Birnbaum IM, Weingartner H, Hartley JT, Stillman RC, Wyatt RJ. Retrograde enhancement of human memory with alcohol. Psychopharmacology 69: 219–222, 1980 [PubMed] [Google Scholar]

889. Partinen M. Genetic and environmental determination of human sleep. Sleep 6: 179–185, 1983 [PubMed] [Google Scholar]

890. Patrick G. On the effects of loss of sleep. Psychol Rev 3: 468–483, 1896 [Google Scholar]

891. Paul K, Dittrichova J. Sleep patterns following learning in infants. In: Sleep 74, edited by Levin P. WK. Basel: Karger, 1975, p. 388–390 [Google Scholar]

892. Pavlides C, Greenstein YJ, Grudman M, Winson J. Long-term potentiation in the dentate gyrus is induced preferentially on the positive phase of theta-rhythm. Brain Res 439: 383–387, 1988 [PubMed] [Google Scholar]

893. Pavlides C, Winson J. Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. J Neurosci 9: 2907–2918, 1989 [PMC free article] [PubMed] [Google Scholar]

894. Payne JD. Memory consolidation, the diurnal rhythm of cortisol, and the nature of dreams: a new hypothesis. Int Rev Neurobiol 92: 101–134, 2010 [PubMed] [Google Scholar]

895. Payne JD, Kensinger EA. Sleep's role in the consolidation of emotional episodic memories. Curr Dir Psychol Sci 19: 290–295, 2010 [Google Scholar]

896. Payne JD, Kensinger EA. Sleep leads to changes in the emotional memory trace: evidence from FMRI. J Cogn Neurosci 23: 1285–1297, 2011 [PubMed] [Google Scholar]

897. Payne JD, Schacter DL, Propper RE, Huang L, Wamsley EJ, Tucker MA, Walker MP, Stickgold R. The role of sleep in false memory formation. Neurobiol Learn Mem 92: 327–334, 2009 [PMC free article] [PubMed] [Google Scholar]

898. Payne JD, Stickgold R, Swanberg K, Kensinger EA. Sleep preferentially enhances memory for emotional components of scenes. Psychol Sci 19: 781–788, 2008 [PMC free article] [PubMed] [Google Scholar]

899. Payne JD, Tucker MA, Ellenbogen JM, Wamsley EJ, Walker MP, Schacter DL, Stickgold R. Memory for semantically related and unrelated declarative information: the benefit of sleep, the cost of wake. PLoS One 7: e33079, 2012 [PMC free article] [PubMed] [Google Scholar]

900. Pearlman C. REM sleep deprivation impairs latent extinction in rats. Physiol Behav 11: 233–237, 1973 [PubMed] [Google Scholar]

901. Pearlman C. REM sleep and information processing: evidence from animal studies. Neurosci Biobehav Rev 3: 57–68, 1979 [Google Scholar]

902. Pearlman C, Becker M. Brief posttrial REM sleep deprivation impairs discrimination learning in rats. Physiol Psychol 1: 373–376, 1973 [Google Scholar]

903. Pearlman C, Becker M. REM sleep deprivation impairs bar-press acquisition in rats. Physiol Behav 13: 813–817, 1974 [PubMed] [Google Scholar]

904. Pearlman C, Becker M. REM sleep deprivation impairs serial reversal and probability maximizing in rats. Physiol Psychol 2: 509–512, 1974 [Google Scholar]

905. Pearlman C, Becker M. Retroactive impairment of cooperative learning by imipramine and chlordiazepoxide in rats. Psychopharmacologia 42: 63–66, 1975 [PubMed] [Google Scholar]

906. Pearlman CA. Effect of rapid eye movement (dreaming) sleep deprivation on retention of avoidance learning in rats. Rep US Nav Submar Med Cent 1–4, 1969 [PubMed] [Google Scholar]

907. Pearlman CA. Latent learning impaired by REM sleep deprivation. Psychon Sci 25: 135–136, 1971 [Google Scholar]

908. Pearlman CA. Interference with taste familiarization by several drugs in rats. Behav Biol 24: 307–316, 1978 [PubMed] [Google Scholar]

909. Pearlman CA. Negative transfer abolished by REM sleep deprivation in rats. Physiol Behav 28: 73–75, 1982 [PubMed] [Google Scholar]

910. Peigneux P, Laureys S, Delbeuck X, Maquet P. Sleeping brain , learning brain. The role of sleep for memory systems. Neuroreport 12: A111–A124, 2001 [PubMed] [Google Scholar]

911. Peigneux P, Laureys S, Fuchs S, Collette F, Perrin F, Reggers J, Phillips C, Degueldre C, Del Fiore G, Aerts J, Luxen A, Maquet P. Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron 44: 535–545, 2004 [PubMed] [Google Scholar]

912. Peigneux P, Laureys S, Fuchs S, Destrebecqz A, Collette F, Delbeuck X, Phillips C, Aerts J, Del Fiore G, Degueldre C, Luxen A, Cleeremans A, Maquet P. Learned material content and acquisition level modulate cerebral reactivation during posttraining rapid-eye-movements sleep. Neuroimage 20: 125–134, 2003 [PubMed] [Google Scholar]

913. Peigneux P, Orban P, Balteau E, Degueldre C, Luxen A, Laureys S, Maquet P. Offline persistence of memory-related cerebral activity during active wakefulness. PLoS Biol 4: e100, 2006 [PMC free article] [PubMed] [Google Scholar]

914. Pennartz CMA, Lee E, Verheul J, Lipa P, Barnes CA, McNaughton BL. The ventral striatum in off-line processing: ensemble reactivation during sleep and modulation by hippocampal ripples. J Neurosci 24: 6446–6456, 2004 [PMC free article] [PubMed] [Google Scholar]

915. Pennartz CMA, Uylings HBM, Barnes CA, McNaughton BL. Memory reactivation and consolidation during sleep: from cellular mechanisms to human performance. Prog Brain Res 138: 143–166, 2002 [PubMed] [Google Scholar]

916. Perazzona B, Isabel G, Preat T, Davis RL. The role of cAMP response element-binding protein in Drosophila long-term memory. J Neurosci 24: 8823–8828, 2004 [PMC free article] [PubMed] [Google Scholar]

917. Pereira DS, Tufik S, Louzada FM, Benedito-Silva AA, Lopez AR, Lemos NA, Korczak AL, D'Almeida V, Pedrazzoli M. Association of the length polymorphism in the human Per3 gene with the delayed sleep-phase syndrome: does latitude have an influence upon it? Sleep 28: 29–32, 2005 [PubMed] [Google Scholar]

918. Perret JL, Tapissier J, Jouvet M. Insomnie et mémoire. A propos d'une observation de dégénérescence striato-nigrique. Electroencephalogr Clin Neurophysiol 47: 499–502, 1979 [PubMed] [Google Scholar]

919. Perrett SP, Dudek SM, Eagleman D, Montague PR, Friedlander MJ. LTD induction in adult visual cortex: role of stimulus timing and inhibition. J Neurosci 21: 2308–2319, 2001 [PMC free article] [PubMed] [Google Scholar]

920. Peters KR, Ray L, Smith V, Smith C. Changes in the density of stage 2 sleep spindles following motor learning in young and older adults. J Sleep Res 17: 23–33, 2008 [PubMed] [Google Scholar]

921. Peters KR, Smith V, Smith CT. Changes in sleep architecture following motor learning depend on initial skill level. J Cogn Neurosci 19: 817–829, 2007 [PubMed] [Google Scholar]

922. Petre-Quadens O. Sleep in mental retardation. In: Sleep and the Maturing Nervous System, edited by Clemente CP. New York: Academic, 1972 [Google Scholar]

923. Petre-Quadens O, Lee de C. Eye-movements during sleep: a common criterion of learning capacities and endocrine activity. Dev Med Child Neurol 730–740, 1970 [PubMed] [Google Scholar]

924. Petre-Quadens O, Jouvet M. Paradoxical sleep and dreaming in mentally retarded children. J Neurol Sci 3: 608–612, 1966 [Google Scholar]

925. Peyrache A, Battaglia FP, Destexhe A. Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputs. Proc Natl Acad Sci USA 108: 17207–17212, 2011 [PMC free article] [PubMed] [Google Scholar]

926. Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP. Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci 12: 919–926, 2009 [PubMed] [Google Scholar]

927. Pezawas L, Verchinski BA, Mattay VS, Callicott JH, Kolachana BS, Straub RE, Egan MF, Meyer-Lindenberg A, Weinberger DR. The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci 24: 10099–10102, 2004 [PMC free article] [PubMed] [Google Scholar]

928. Piscopo S. Sleep and its possible role in learning: a phylogenetic view. Front Biosci 1: 437–447, 2009 [PubMed] [Google Scholar]

929. Piscopo S, Mandile P, Montagnese P, Cotugno M, Giuditta A, Vescia S. Identification of trains of sleep sequences in adult rats. Behav Brain Res 119: 93–101, 2001 [PubMed] [Google Scholar]

930. Plihal W, Born J. Effects of early and late nocturnal sleep on declarative and procedural memory. J Cogn Neurosci 9: 534–547, 1997 [PubMed] [Google Scholar]

931. Plihal W, Born J. Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology 36: 571–582, 1999 [PubMed] [Google Scholar]

932. Plihal W, Born J. Memory consolidation in human sleep depends on inhibition of glucocorticoid release. Neuroreport 10: 2741–2747, 1999 [PubMed] [Google Scholar]

933. Plihal W, Pietrowsky R, Born J. Dexamethasone blocks sleep induced improvement of declarative memory. Psychoneuroendocrinology 24: 313–331, 1999 [PubMed] [Google Scholar]

934. Poduri A, Lowenstein D. Epilepsy genetics–past, present, future. Curr Opin Genet Dev 21: 325–332, 2011 [PMC free article] [PubMed] [Google Scholar]

935. Poe GR, Nitz DA, McNaughton BL, Barnes CA. Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep. Brain Res 855: 176–180, 2000 [PubMed] [Google Scholar]

937. Poldrack RA, Clark J, Pare-Blagoev EJ, Shohamy D, Moyano JC, Myers C, Gluck MA. Interactive memory systems in the human brain. Nature 414: 546–550, 2001 [PubMed] [Google Scholar]

938. Polyn SM, Kahana MJ. Memory search and the neural representation of context. Trends Cogn Sci 12: 24–30, 2008 [PMC free article] [PubMed] [Google Scholar]

939. Pompeiano M, Cirelli C, Ronca-Testoni S, Tononi G. NGFI-A expression in the rat brain after sleep deprivation. Brain Res 46: 143–153, 1997 [PubMed] [Google Scholar]

940. Pompeiano M, Cirelli C, Tononi G. Immediate-early genes in spontaneous wakefulness and sleep: expression of c-fos and NGFI-A mRNA and protein. J Sleep Res 3: 80–96, 1994 [PubMed] [Google Scholar]

941. Popa D, Duvarci S, Popescu AT, Léna C, Paré D. Coherent amygdalocortical theta promotes fear memory consolidation during paradoxical sleep. Proc Natl Acad Sci USA 107: 6516–6519, 2010 [PMC free article] [PubMed] [Google Scholar]

942. Porkka-Heiskanen T, Strecker RE, Thakkar M, Bjorkum AA, Greene RW, McCarley RW. Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276: 1265–1268, 1997 [PMC free article] [PubMed] [Google Scholar]

943. Portell Cortes I, Morgado Bernal I. Learning and subsequent paradoxical sleep. Arch Neurobiol 51: 305–315, 1988 [PubMed] [Google Scholar]

944. Portell-Cortés I, Martí-Nicolovius M, Segura-Torres P, Morgado-Bernal I. Correlations between paradoxical sleep and shuttle-box conditioning in rats. Behav Neurosci 103: 984–990, 1989 [PubMed] [Google Scholar]

945. Potkin KT, Bunney WE. Sleep improves memory: the effect of sleep on long term memory in early adolescence. PLoS One 7: e42191, 2012 [PMC free article] [PubMed] [Google Scholar]

946. Prather AA, Hall M, Fury JM, Ross DC, Muldoon MF, Cohen S, Marsland AL. Sleep and antibody response to hepatitis B vaccination. Sleep 35: 1063–1069, 2012 [PMC free article] [PubMed] [Google Scholar]

947. Prehn-Kristensen A, Goder R, Chirobeja S, Bressmann I, Ferstl R, Baving L. Sleep in children enhances preferentially emotional declarative but not procedural memories. J Exp Child Psychol 104: 132–139, 2009 [PubMed] [Google Scholar]

948. Prehn-Kristensen A, Göder R, Fischer J, Wilhelm I, Seeck-Hirschner M, Aldenhoff J, Baving L. Reduced sleep-associated consolidation of declarative memory in attention-deficit/hyperactivity disorder. Sleep Med 12: 672–679, 2011 [PubMed] [Google Scholar]

949. Prehn-Kristensen A, Molzow I, Munza M, Wilhelm I, Muller K, Freytag D, Wiesner CD, Baving L. Sleep restores daytime deficits in procedural memory in children with attention-deficit/hyperactivity disorder. Res Dev Disabil 32: 2480–2488, 2011 [PubMed] [Google Scholar]

950. Puig MV, Ushimaru M, Kawaguchi Y. Two distinct activity patterns of fast-spiking interneurons during neocortical UP states. Proc Natl Acad Sci USA 105: 8428–8433, 2008 [PMC free article] [PubMed] [Google Scholar]

951. Qin YL, McNaughton BL, Skaggs WE, Barnes CA. Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philos Trans R Soc Lond B Biol Sci 352: 1525–1533, 1997 [PMC free article] [PubMed] [Google Scholar]

952. Quan SF, Howard BV, Iber C, Kiley JP, Nieto FJ, O'Connor GT, Rapoport DM, Redline S, Robbins J, Samet JM, Wahl PW. The Sleep Heart Health Study: design, rationale, and methods. Sleep 20: 1077–1085, 1997 [PubMed] [Google Scholar]

953. Quervain DJ. Glucocorticoid-induced inhibition of memory retrieval: implications for posttraumatic stress disorder. Ann NY Acad Sci 1071: 216–220, 2006 [PubMed] [Google Scholar]

955. Ramadan W, Eschenko O, Sara SJ. Hippocampal sharp wave/ripples during sleep for consolidation of associative memory. PLoS One 4: e6697, 2009 [PMC free article] [PubMed] [Google Scholar]

956. Ramm P, Smith CT. Rates of cerebral protein synthesis are linked to slow wave sleep in the rat. Physiol Behav 48: 749–753, 1990 [PubMed] [Google Scholar]

957. Rasch B, Born J. Maintaining memories by reactivation. Curr Opin Neurobiol 17: 698–703, 2007 [PubMed] [Google Scholar]

958. Rasch B, Born J. Reactivation and consolidation of memory during sleep. Curr Dir Psychol Sci 17: 188–192, 2008 [Google Scholar]

959. Rasch B, Büchel C, Gais S, Born J. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315: 1426–1429, 2007 [PubMed] [Google Scholar]

960. Rasch B, Dodt C, Mölle M, Born J. Sleep-stage-specific regulation of plasma catecholamine concentration. Psychoneuroendocrinology 32: 884–891, 2007 [PubMed] [Google Scholar]

961. Rasch B, Gais S, Born J. Impaired off-line consolidation of motor memories after combined blockade of cholinergic receptors during REM sleep-rich sleep. Neuropsychopharmacology 34: 1843–1853, 2009 [PubMed] [Google Scholar]

962. Rasch B, Pommer J, Diekelmann S, Born J. Pharmacological REM sleep suppression paradoxically improves rather than impairs skill memory. Nat Neurosci 12: 396–397, 2009 [PubMed] [Google Scholar]

963. Rasch BH, Born J, Gais S. Combined blockade of cholinergic receptors shifts the brain from stimulus encoding to memory consolidation. J Cogn Neurosci 18: 793–802, 2006 [PubMed] [Google Scholar]

964. Rattenborg NC, Martinez-Gonzalez D. A bird-brain view of episodic memory. Behav Brain Res 222: 236–245, 2011 [PubMed] [Google Scholar]

965. Rattenborg NC, Martinez-Gonzalez D, Roth TC, II, Pravosudov VV. Hippocampal memory consolidation during sleep: a comparison of mammals and birds. Biol Rev Camb Philos Soc 2010 [PMC free article] [PubMed] [Google Scholar]

966. Rauchs G, Bertran F, Guillery-Girard B, Desgranges B, Kerrouche N, Denise P, Foret J, Eustache F. Consolidation of strictly episodic memories mainly requires rapid eye movement sleep. Sleep 27: 395–401, 2004 [PubMed] [Google Scholar]

967. Rauchs G, Desgranges B, Foret J, Eustache F. The relationships between memory systems and sleep stages. J Sleep Res 14: 123–140, 2005 [PubMed] [Google Scholar]

968. Rauchs G, Feyers D, Landeau B, Bastin C, Luxen A, Maquet P, Collette F. Sleep contributes to the strengthening of some memories over others, depending on hippocampal activity at learning. J Neurosci 31: 2563–2568, 2011 [PMC free article] [PubMed] [Google Scholar]

969. Rauske PL, Chi Z, Dave AS, Margoliash D. Neuronal stability and drift across periods of sleep: premotor activity patterns in a vocal control nucleus of adult zebra finches. J Neurosci 30: 2783–2794, 2010 [PMC free article] [PubMed] [Google Scholar]

970. Ravassard P, Pachoud B, Comte J, Mejia-Perez C, Scoté-Blachon C, Gay N, Claustrat B, Touret M, Luppi P, Salin PA. Paradoxical (REM) sleep deprivation causes a large and rapidly reversible decrease in long-term potentiation, synaptic transmission, glutamate receptor protein levels, and ERK/MAPK activation in the dorsal hippocampus. Sleep 32: 227–240, 2009 [PMC free article] [PubMed] [Google Scholar]

971. Rawashdeh O, Borsetti de NH, Roman G, Cahill GM. Melatonin suppresses nighttime memory formation in zebrafish. Science 318: 1144–1146, 2007 [PubMed] [Google Scholar]

972. Rebola N, Lujan R, Cunha RA, Mulle C. Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57: 121–134, 2008 [PubMed] [Google Scholar]

973. Rechtschaffen A, Bergmann BM. Sleep deprivation in the rat by the disk-over-water method. Behav Brain Res 69: 55–63, 1995 [PubMed] [Google Scholar]

974. Rechtschaffen A, Kales A. A Manual of Standardized Terminology, Techniques and Scoring System of Sleep Stages in Human Subjects. Los Angeles: Brain Information Service/Brain Research Institute, University of California, 1968 [PubMed] [Google Scholar]

975. Rector DM, Schei JL, van Dongen HPA, Belenky G, Krueger JM. Physiological markers of local sleep. Eur J Neurosci 29: 1771–1778, 2009 [PMC free article] [PubMed] [Google Scholar]

976. Redline S, Kirchner HL, Quan SF, Gottlieb DJ, Kapur V, Newman A. The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture. Arch Intern Med 164: 406–418, 2004 [PubMed] [Google Scholar]

977. Redondo RL, Morris RGM. Making memories last: the synaptic tagging and capture hypothesis. Nat Rev Neurosci 12: 17–30, 2011 [PubMed] [Google Scholar]

978. Reimund E. The free radical flux theory of sleep. Med Hypotheses 43: 231–233, 1994 [PubMed] [Google Scholar]

979. Reiner A, Perkel DJ, Bruce LL, Butler AB, Csillag A, Kuenzel W, Medina L, Paxinos G, Shimizu T, Striedter G, Wild M, Ball GF, Durand S, Güntürkün O, Lee DW, Mello CV, Powers A, White SA, Hough G, Kubikova L, Smulders TV, Wada K, Dugas-Ford J, Husband S, Yamamoto K, Yu J, Siang C, Jarvis ED, Gütürkün O. Revised nomenclature for avian telencephalon and some related brainstem nuclei. J Comp Neurol 473: 377–414, 2004 [PMC free article] [PubMed] [Google Scholar]

980. Renegar KB, Crouse D, Floyd RA, Krueger J. Progression of influenza viral infection through the murine respiratory tract: the protective role of sleep deprivation. Sleep 23: 859–863, 2000 [PubMed] [Google Scholar]

981. Renegar KB, Floyd RA, Krueger JM. Effects of short-term sleep deprivation on murine immunity to influenza virus in young adult and senescent mice. Sleep 21: 241–248, 1998 [PubMed] [Google Scholar]

982. Retey JV, Adam M, Gottselig JM, Khatami R, Durr R, Achermann P, Landolt H. Adenosinergic mechanisms contribute to individual differences in sleep deprivation-induced changes in neurobehavioral function and brain rhythmic activity. J Neurosci 26: 10472–10479, 2006 [PMC free article] [PubMed] [Google Scholar]

983. Reymann KG, Frey JU. The late maintenance of hippocampal LTP: requirements, phases, “synaptic tagging,” “late-associativity” and implications. Neuropharmacology 52: 24–40, 2007 [PubMed] [Google Scholar]

985. Ribeiro S, Gervasoni D, Soares ES, Zhou Y, Lin S, Pantoja J, Lavine M, Nicolelis MAL. Long-lasting novelty-induced neuronal reverberation during slow-wave sleep in multiple forebrain areas. PLoS Biol 2: E24, 2004 [PMC free article] [PubMed] [Google Scholar]

986. Ribeiro S, Goyal V, Mello CV, Pavlides C. Brain gene expression during REM sleep depends on prior waking experience. Learn Mem 6: 500–508, 1999 [PMC free article] [PubMed] [Google Scholar]

987. Ribeiro S, Mello CV, Velho T, Gardner TJ, Jarvis ED, Pavlides C. Induction of hippocampal long-term potentiation during waking leads to increased extrahippocampal zif-268 expression during ensuing rapid-eye-movement sleep. J Neurosci 22: 10914–10923, 2002 [PMC free article] [PubMed] [Google Scholar]

988. Ribeiro S, Nicolelis MAL. Reverberation, storage, and postsynaptic propagation of memories during sleep. Learn Mem 11: 686–696, 2004 [PMC free article] [PubMed] [Google Scholar]

989. Ribeiro S, Shi X, Engelhard M, Zhou Y, Zhang H, Gervasoni D, Lin SC, Wada K, Lemos NA, Nicolelis MA. Novel experience induces persistent sleep-dependent plasticity in the cortex but not in the hippocampus. Front Neurosci 1: 43–55, 2007 [PMC free article] [PubMed] [Google Scholar]

990. Richardson A, Gough J. The long rang effect of sleep on retention. Aust J Psychol 15, 1963 [Google Scholar]

991. Rickard TC, Cai DJ, Rieth CA, Jones J, Ard MC. Sleep does not enhance motor sequence learning. J Exp Psychol Learn 34: 834–842, 2008 [PubMed] [Google Scholar]

992. Rideout BE. Non-REM sleep as a source of learning deficits induced by REM sleep deprivation. Physiol Behav 22: 1043–1047, 1979 [PubMed] [Google Scholar]

993. Riedner BA, Hulse BK, Murphy MJ, Ferrarelli F, Tononi G. Temporal dynamics of cortical sources underlying spontaneous and peripherally evoked slow waves. Prog Brain Res 193: 201–218, 2011 [PMC free article] [PubMed] [Google Scholar]

994. Riedner BA, Vyazovskiy VV, Huber R, Massimini M, Esser S, Murphy M, Tononi G. Sleep homeostasis and cortical synchronization. III. A high-density EEG study of sleep slow waves in humans. Sleep 30: 1643–1657, 2007 [PMC free article] [PubMed] [Google Scholar]

995. Rieth CA, Cai DJ, McDevitt EA, Mednick SC. The role of sleep and practice in implicit and explicit motor learning. Behav Brain Res 214: 470–474, 2010 [PMC free article] [PubMed] [Google Scholar]

997. Rimmele U, Spillmann M, Bartschi C, Wolf OT, Weber CS, Ehlert U, Wirtz PH. Melatonin improves memory acquisition under stress independent of stress hormone release. Psychopharmacology 202: 663–672, 2009 [PubMed] [Google Scholar]

998. Ringli M, Huber R. Developmental aspects of sleep slow waves: linking sleep, brain maturation and behavior. Prog Brain Res 193: 63–82, 2011 [PubMed] [Google Scholar]

999. Ritter SM, Strick M, Bos MW, van Baaren RB, Dijksterhuis A. Good morning creativity: task reactivation during sleep enhances beneficial effect of sleep on creative performance. J Sleep Res. In press [PubMed] [Google Scholar]

1000. Robertson EM. From creation to consolidation: a novel framework for memory processing. PLoS Biol 7: e19, 2009 [PMC free article] [PubMed] [Google Scholar]

1001. Robertson EM, Cohen DA. Understanding consolidation through the architecture of memories. Neuroscientist 12: 261–271, 2006 [PubMed] [Google Scholar]

1002. Robertson EM, Pascual-Leone A, Miall RC. Current concepts in procedural consolidation. Nat Rev Neurosci 5: 576–582, 2004 [PubMed] [Google Scholar]

1003. Robertson EM, Pascual-Leone A, Press DZ. Awareness modifies the skill-learning benefits of sleep. Curr Biol 14: 208–212, 2004 [PubMed] [Google Scholar]

1004. Robertson EM, Press DZ, Pascual-Leone A. Off-line learning and the primary motor cortex. J Neurosci 25: 6372–6378, 2005 [PMC free article] [PubMed] [Google Scholar]

1005. Robins A. Catastrophic forgetting, rehearsal and pseudorehearsal. Connect Sci 7: 123–146, 1995 [Google Scholar]

1006. Roediger HL, III, Butler AC. The critical role of retrieval practice in long-term retention. Trends Cogn Sci 15: 20–27, 2011 [PubMed] [Google Scholar]

1007. Roediger HL, McDermott KB. Creating false memories: remembering words not presented in lists. J Exp Psychol Learn 21: 803–814, 1995 [Google Scholar]

1008. Rohde M, Tokay T, Kohling R, Kirschstein T. GABA(A) receptor inhibition does not affect mGluR-dependent LTD at hippocampal Schaffer collateral-CA1 synapses. Neurosci Lett 467: 20–25, 2009 [PubMed] [Google Scholar]

1009. Rolls A, Colas D, Adamantidis A, Carter M, Lanre-Amos T, Heller HC, Lecea de L. Optogenetic disruption of sleep continuity impairs memory consolidation. Proc Natl Acad Sci USA 108: 13305–13310, 2011 [PMC free article] [PubMed] [Google Scholar]

1010. Romcy-Pereira R, Pavlides C. Distinct modulatory effects of sleep on the maintenance of hippocampal and medial prefrontal cortex LTP. Eur J Neurosci 20: 3453–3462, 2004 [PubMed] [Google Scholar]

1012. Rosanova M, Ulrich D. Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J Neurosci 25: 9398–9405, 2005 [PMC free article] [PubMed] [Google Scholar]

1013. Rose M, Haider H, Weiller C, Buchel C. The role of medial temporal lobe structures in implicit learning: an event-related fMRI study. Neuron 36: 1221–1231, 2002 [PubMed] [Google Scholar]

1014. Rose M, Haider H, Weiller C, Büchel C. The relevance of the nature of learned associations for the differentiation of human memory systems. Learn Mem 11: 145–152, 2004 [PubMed] [Google Scholar]

1015. Roth DA, Kishon-Rabin L, Hildesheimer M, Karni A. A latent consolidation phase in auditory identification learning: time in the awake state is sufficient. Learn Mem 12: 159–164, 2005 [PMC free article] [PubMed] [Google Scholar]

1016. Ruch S, Markes O, Duss SB, Oppliger D, Reber TP, Koenig T, Mathis J, Roth C, Henke K. Sleep stage II contributes to the consolidation of declarative memories. Neuropsychologia 2012 [PubMed] [Google Scholar]

1017. Rudolph M, Pospischil M, Timofeev I, Destexhe A. Inhibition determines membrane potential dynamics and controls action potential generation in awake and sleeping cat cortex. J Neurosci 27: 5280–5290, 2007 [PMC free article] [PubMed] [Google Scholar]

1018. Rudoy JD, Voss JL, Westerberg CE, Paller KA. Strengthening individual memories by reactivating them during sleep. Science 326: 1079, 2009 [PMC free article] [PubMed] [Google Scholar]

1019. Ruiter ME, Decoster J, Jacobs L, Lichstein KL. Normal sleep in African-Americans and Caucasian-Americans: a meta-analysis. Sleep Med 12: 209–214, 2011 [PubMed] [Google Scholar]

1020. Sacktor TC. PKMzeta, LTP maintenance, and the dynamic molecular biology of memory storage. Prog Brain Res 169: 27–40, 2008 [PubMed] [Google Scholar]

1021. Sagales T, Domino EF. Effects of stress and REM sleep deprivation on the patterns of avoidance learning and brain acetylcholine in the mouse. Psychopharmacologia 29: 307–315, 1973 [PubMed] [Google Scholar]

1022. Saha S, Datta S. Two-way active avoidance training-specific increases in phosphorylated cAMP response element-binding protein in the dorsal hippocampus, amygdala, and hypothalamus. Eur J Neurosci 21: 3403–3414, 2005 [PubMed] [Google Scholar]

1023. Sakai T, Tamura T, Kitamoto T, Kidokoro Y. A clock gene, period, plays a key role in long-term memory formation in Drosophila. Proc Natl Acad Sci USA 101: 16058–16063, 2004 [PMC free article] [PubMed] [Google Scholar]

1024. Saletin JM, Goldstein AN, Walker MP. The role of sleep in directed forgetting and remembering of human memories. Cereb Cortex 21: 2534–2541, 2011 [PMC free article] [PubMed] [Google Scholar]

1025. Saletin JM, Walker MP. Nocturnal mnemonics: sleep and hippocampal memory processing. Front Neurol 3: 59, 2012 [PMC free article] [PubMed] [Google Scholar]

1026. Sanchez-Huertas C, Rico B. CREB-dependent regulation of GAD65 transcription by BDNF/TrkB in cortical interneurons. Cereb Cortex 21: 777–788, 2011 [PubMed] [Google Scholar]

1027. Sanchez-Vives MV, Mattia M, Compte A, Perez-Zabalza M, Winograd M, Descalzo VF, Reig R. Inhibitory modulation of cortical up states. J Neurophysiol 104: 1314–1324, 2010 [PubMed] [Google Scholar]

1028. Sanchez-Vives MV, McCormick DA. Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3: 1027–1034, 2000 [PubMed] [Google Scholar]

1029. Sanford LD, Fang J, Tang X. Sleep after differing amounts of conditioned fear training in BALB/cJ mice. Behav Brain Res 147: 193–202, 2003 [PubMed] [Google Scholar]

1030. Sanford LD, Silvestri AJ, Ross RJ, Morrison AR. Influence of fear conditioning on elicited ponto-geniculo-occipital waves and rapid eye movement sleep. Arch Ital Biol 139: 169–183, 2001 [PubMed] [Google Scholar]

1031. Sanford LD, Tang X, Ross RJ, Morrison AR. Influence of shock training and explicit fear-conditioned cues on sleep architecture in mice: strain comparison. Behav Genet 33: 43–58, 2003 [PubMed] [Google Scholar]

1032. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE. Sleep state switching. Neuron 68: 1023–1042, 2010 [PMC free article] [PubMed] [Google Scholar]

1033. Sara SJ. Strengthening the shaky trace through retrieval. Nat Rev Neurosci 1: 212–213, 2000 [PubMed] [Google Scholar]

1034. Sara SJ. Reactivation, retrieval, replay and reconsolidation in and out of sleep: connecting the dots. Front Behav Neurosci 4, 2010 [PMC free article] [PubMed] [Google Scholar]

1035. Scammell TE, Gerashchenko DY, Mochizuki T, McCarthy MT, Estabrooke IV, Sears CA, Saper CB, Urade Y, Hayaishi O. An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience 107: 653–663, 2001 [PubMed] [Google Scholar]

1036. Schabus M, Dang-Vu TT, Albouy G, Balteau E, Boly M, Carrier J, Darsaud A, Degueldre C, Desseilles M, Gais S, Phillips C, Rauchs G, Schnakers C, Sterpenich V, Vandewalle G, Luxen A, Maquet P. Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci USA 104: 13164–13169, 2007 [PMC free article] [PubMed] [Google Scholar]

1037. Schabus M, Gruber G, Parapatics S, Sauter C, Klösch G, Anderer P, Klimesch W, Saletu B, Zeitlhofer J. Sleep spindles and their significance for declarative memory consolidation. Sleep 27: 1479–1485, 2004 [PubMed] [Google Scholar]

1038. Schabus M, Hödlmoser K, Gruber G, Sauter C, Anderer P, Klösch G, Parapatics S, Saletu B, Klimesch W, Zeitlhofer J. Sleep spindle-related activity in the human EEG and its relation to general cognitive and learning abilities. Eur J Neurosci 23: 1738–1746, 2006 [PubMed] [Google Scholar]

1039. Schabus M, Hoedlmoser K, Pecherstorfer T, Anderer P, Gruber G, Parapatics S, Sauter C, Kloesch G, Klimesch W, Saletu B, Zeitlhofer J. Interindividual sleep spindle differences and their relation to learning-related enhancements. Brain Res 1191: 127–135, 2008 [PMC free article] [PubMed] [Google Scholar]

1040. Scharf MB, Kauffman R, Brown L, Segal JJ, Hirschowitz J. Morning amnestic effects of triazolam. Hillside J Clin Psychiatry 8: 38–45, 1986 [PubMed] [Google Scholar]

1041. Scharf MT, Naidoo N, Zimmerman JE, Pack AI. The energy hypothesis of sleep revisited. Prog Neurobiol 86: 264–280, 2008 [PMC free article] [PubMed] [Google Scholar]

1042. Schendan HE, Searl MM, Melrose RJ, Stern CE. An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron 37: 1013–1025, 2003 [PubMed] [Google Scholar]

1043. Schiller D, Monfils M, Raio CM, Johnson DC, Ledoux JE, Phelps EA. Preventing the return of fear in humans using reconsolidation update mechanisms. Nature 463: 49–53, 2010 [PMC free article] [PubMed] [Google Scholar]

1044. Schmidt C, Peigneux P, Muto V, Schenkel M, Knoblauch V, Münch M, Quervain de DJ, Wirz-Justice A, Cajochen C. Encoding difficulty promotes postlearning changes in sleep spindle activity during napping. J Neurosci 26: 8976–8982, 2006 [PMC free article] [PubMed] [Google Scholar]

1045. Schmidt HS, Kaelbling R, Alexander J. Sleep patterns in mental retardates: Mongoloids and monozygotic twins. Psychophysiology: 212, 1968 [Google Scholar]

1046. Schmidt R. On recognition and retroactive inhibition: a work by Rosa Heine (1914). Z Angew Psychol 195: 223–230, 1987 [Google Scholar]

1047. Schmitt LI, Sims RE, Dale N, Haydon PG. Wakefulness affects synaptic and network activity by increasing extracellular astrocyte-derived adenosine. J Neurosci 32: 4417–4425, 2012 [PMC free article] [PubMed] [Google Scholar]

1048. Schoen LS, Badia P. Facilitated Recall Following REM And NREM Naps. Psychophysiology 21, 1984 [PubMed] [Google Scholar]

1049. Schoups A, Vogels R, Qian N, Orban G. Practising orientation identification improves orientation coding in V1 neurons. Nature 412: 549–553, 2001 [PubMed] [Google Scholar]

1050. Schwartz S. Are life episodes replayed during dreaming? Trends Cogn Sci 7: 325–327, 2003 [PubMed] [Google Scholar]

1051. Schwartz S, Maquet P, Frith C. Neural correlates of perceptual learning: a functional MRI study of visual texture discrimination. Proc Natl Acad Sci USA 99: 17137–17142, 2002 [PMC free article] [PubMed] [Google Scholar]

1052. Schwarz TL, Tempel BL, Papazian DM, Jan YN, Jan LY. Multiple potassium-channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature 331: 137–142, 1988 [PubMed] [Google Scholar]

1053. Schwindt PC, Spain WJ, Crill WE. Calcium-dependent potassium currents in neurons from cat sensorimotor cortex. J Neurophysiol 67: 216–226, 1992 [PubMed] [Google Scholar]

1054. Scrima L. Isolated REM sleep facilitates recall of complex associative information. Psychophysiology 19: 252–259, 1982 [PubMed] [Google Scholar]

1055. Scullin MK. Sleep, memory, and aging: the link between slow-wave sleep and episodic memory changes from younger to older adults. Psychol Aging 2012 [PMC free article] [PubMed] [Google Scholar]

1056. Scullin MK, McDaniel MA. Remembering to execute a goal: sleep on it! Psychol Sci 21: 1028–1035, 2010 [PubMed] [Google Scholar]

1057. Seeck-Hirschner M, Baier PC, Weinhold SL, Dittmar M, Heiermann S, Aldenhoff JB, Göder R. Declarative memory performance is associated with the number of sleep spindles in elderly women. Am J Geriatr Psychiatry 2011 [PubMed] [Google Scholar]

1059. Seibt J, Aton SJ, Jha SK, Coleman T, Dumoulin MC, Frank MG. The non-benzodiazepine hypnotic zolpidem impairs sleep-dependent cortical plasticity. Sleep 31: 1381–1391, 2008 [PMC free article] [PubMed] [Google Scholar]

1060. Seibt J, Dumoulin MC, Aton SJ, Coleman T, Watson A, Naidoo N, Frank MG. Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr Biol 22: 676–682, 2012 [PMC free article] [PubMed] [Google Scholar]

1061. Sejnowski TJ, Destexhe A. Why do we sleep? Brain Res 886: 208–223, 2000 [PubMed] [Google Scholar]

1062. Seugnet L, Suzuki Y, Merlin G, Gottschalk L, Duntley SP, Shaw PJ. Notch signaling modulates sleep homeostasis and learning after sleep deprivation in Drosophila. Curr Biol 21: 835–840, 2011 [PMC free article] [PubMed] [Google Scholar]

1063. Shank SS, Margoliash D. Sleep and sensorimotor integration during early vocal learning in a songbird. Nature 458: 73–77, 2009 [PMC free article] [PubMed] [Google Scholar]

1064. Shanks DR, Johnstone T. Evaluating the relationship between explicit and implicit knowledge in a sequential reaction time task. J Exp Psychol Learn 25: 1435–1451, 1999 [PubMed] [Google Scholar]

1065. Shen J, Kudrimoti HS, McNaughton BL, Barnes CA. Reactivation of neuronal ensembles in hippocampal dentate gyrus during sleep after spatial experience. J Sleep Res 7 Suppl 1: 6–16, 1998 [PubMed] [Google Scholar]

1066. Shepherd JD. Memory, plasticity and sleep: a role for calcium permeable AMPA receptors? Front Mol Neurosci 5: 49, 2012 [PMC free article] [PubMed] [Google Scholar]

1067. Shepherd JD, Bear MF. New views of Arc, a master regulator of synaptic plasticity. Nat Neurosci 14: 279–284, 2011 [PMC free article] [PubMed] [Google Scholar]

1068. Sheth BR, Serranzana A, Anjum SF, Khan M. Sleep's influence on a reflexive form of memory that does not require voluntary attention. Sleep 35: 657–666, 2012 [PMC free article] [PubMed] [Google Scholar]

1069. Sheth BR, Varghese R, Truong T. Sleep shelters verbal memory from different kinds of interference. Sleep 35: 985–996, 2012 [PMC free article] [PubMed] [Google Scholar]

1070. Shibagaki M, Kiyono S, Watanabe K. Nocturnal sleep in severely mentally retarded children: abnormal EEG patterns in sleep cycle. Electroencephalogr Clin Neurophysiol 49: 337–344, 1980 [PubMed] [Google Scholar]

1071. Shibagaki M, Kiyono S, Watanabe K, Hakamada S. Concurrent occurrence of rapid eye movement with spindle burst during nocturnal sleep in mentally retarded children. Electroencephalogr Clin Neurophysiol 53: 27–35, 1982 [PubMed] [Google Scholar]

1072. Shiromani P, Gutwein BM, Fishbein W. Development of learning and memory in mice after brief paradoxical sleep deprivation. Physiol Behav 22: 971–978, 1979 [PubMed] [Google Scholar]

1073. Shiromani PJ, Xu M, Winston EM, Shiromani SN, Gerashchenko D, Weaver DR. Sleep rhythmicity and homeostasis in mice with targeted disruption of mPeriod genes. Am J Physiol Regul Integr Comp Physiol 287: R47–R57, 2004 [PubMed] [Google Scholar]

1074. Shu Y, Hasenstaub A, McCormick DA. Turning on and off recurrent balanced cortical activity. Nature 423: 288–293, 2003 [PubMed] [Google Scholar]

1075. Siapas AG, Wilson M. Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron: 1123–1128, 1998 [PubMed] [Google Scholar]

1079. Siengsukon C, Boyd LA. Sleep enhances off-line spatial and temporal motor learning after stroke. Neuralrehab Neural Re 23: 327–335, 2009 [PubMed] [Google Scholar]

1080. Siengsukon CF, Boyd LA. Sleep enhances implicit motor skill learning in individuals poststroke. Top Stroke Rehabil 15: 1–12, 2008 [PubMed] [Google Scholar]

1081. Siengsukon CF, Boyd LA. Does sleep promote motor learning? Implications for physical rehabilitation. Phys Ther 89: 370–383, 2009 [PubMed] [Google Scholar]

1082. Silva A, Collao A, Orellana M, Melendez J, Caviedes P, Cardenas AM. Zopiclone, but not brotizolam, impairs memory storage during sleep. Neurosci Res 47: 241–243, 2003 [PubMed] [Google Scholar]

1083. Silverstein LD, Levy MC. The stability of the sigma sleep spindle. Electroencephalogr Clin Neurophysiol 40: 666–670, 1976 [PubMed] [Google Scholar]

1084. Silvestri AJ. REM sleep deprivation affects extinction of cued but not contextual fear conditioning. Physiol Behav 84: 343–349, 2005 [PubMed] [Google Scholar]

1085. Singh K, Chao MY, Somers GA, Komatsu H, Corkins ME, Larkins-Ford J, Tucey T, Dionne HM, Walsh MB, Beaumont EK, Hart DP, Lockery SR, Hart AC. C. elegans Notch signaling regulates adult chemosensory response and larval molting quiescence. Curr Biol 21: 825–834, 2011 [PMC free article] [PubMed] [Google Scholar]

1086. Sinton CM, Jouvet M. Paradoxical sleep and coping with environmental change. Behav Brain Res 9: 151–163, 1983 [PubMed] [Google Scholar]

1087. Sirota A, Buzsáki G. Interaction between neocortical and hippocampal networks via slow oscillations. Thalamus Relat Syst 3: 245–259, 2005 [PMC free article] [PubMed] [Google Scholar]

1088. Sirota A, Csicsvari J, Buhl D, Buzsáki G. Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci USA 100: 2065–2069, 2003 [PMC free article] [PubMed] [Google Scholar]

1089. Skaggs WE, McNaughton BL. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271: 1870–1873, 1996 [PubMed] [Google Scholar]

1090. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6: 149–172, 1996 [PubMed] [Google Scholar]

1091. Sloan MA. The effects of deprivation of rapid eye movement (REM) sleep on maze learning and aggression in the albino rat. J Psychiatr Res 9: 101–111, 1972 [PubMed] [Google Scholar]

1092. Smith C. Sleep states and learning: a review of the animal literature. Neurosci Biobehav Rev 9: 157–168, 1985 [PubMed] [Google Scholar]

1093. Smith C. REM sleep and learning: some recent findings. In: The Functions of Dreaming, edited by Moffitt A, Kramer M, Hoffmann R. Albany, NY: State University of New York Press, 1993, p. 341–361 [Google Scholar]

1094. Smith C. Sleep states and memory processes. Behav Brain Res 69: 137–145, 1995 [PubMed] [Google Scholar]

1095. Smith C. Sleep stages, memory processes and synaptic plasticity. Behav Brain Res: 49–56, 1996 [PubMed] [Google Scholar]

1096. Smith C. Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Med Rev 5: 491–506, 2001 [PubMed] [Google Scholar]

1097. Smith C. The REM sleep window and memory processing. In: Sleep and Brain Plasticity, edited by Maquet P, Smith C. New York: Oxford Univ. Press, 2003, p. 117–133 [Google Scholar]

1098. Smith C. Sleep states and memory processing in rodents: a review. Sleep Med Clinics 6: 59–70, 2011 [Google Scholar]

1099. Smith C, Conway J, Rose G. Evidence for a N-methyl-d-aspartate receptor dependent window for memory of a spatial learning task. Sleep Res 22, 1993 [Google Scholar]

1100. Smith C, Gisquet-Verrier P. Paradoxical sleep deprivation and sleep recording following training in a brightness discrimination avoidance task in Sprague-Dawley rats: paradoxical effects. Neurobiol Learn Mem 66: 283–294, 1996 [PubMed] [Google Scholar]

1101. Smith C, Kelly G. Paradoxical sleep deprivation applied two days after end of training retards learning. Physiol Behav 43: 213–216, 1988 [PubMed] [Google Scholar]

1102. Smith C, Kitahama K, Valatx JL, Jouvet M. Increased paradoxical sleep in mice during acquisition of a shock avoidance task. Brain Res 77: 221–230, 1974 [PubMed] [Google Scholar]

1103. Smith C, Lapp L. Increases in number of REMS and REM density in humans following an intensive learning period. Sleep 14: 325–330, 1991 [PubMed] [Google Scholar]

1104. Smith C, Lowe D, Smith MJ. Increases in paradoxical and slow sleep during acquisition of an appetitive task in rats. Physiol Psychol 5: 364–372, 1977 [Google Scholar]

1105. Smith C, Rose GM. Evidence for a paradoxical sleep window for place learning in the Morris water maze. Physiol Behav 59: 93–97, 1996 [PubMed] [Google Scholar]

1106. Smith C, Rose GM. Posttraining paradoxical sleep in rats is increased after spatial learning in the Morris water maze. Behav Neurosci 111: 1197–1204, 1997 [PubMed] [Google Scholar]

1107. Smith C, Smith D. Ingestion of ethanol just prior to sleep onset impairs memory for procedural but not declarative tasks. Sleep 26: 185–191, 2003 [PubMed] [Google Scholar]

1108. Smith C, Tenn C, Annett R. Some biochemical and behavioural aspects of the paradoxical sleep window. Can J Psychol 45: 115–124, 1991 [PubMed] [Google Scholar]

1109. Smith C, Weeden K. Post training REMs coincident auditory stimulation enhances memory in humans. Psychiatr J Univ Ott 15: 85–90, 1990 [PubMed] [Google Scholar]

1110. Smith C, Wong PT. Paradoxical sleep increases predict successful learning in a complex operant task. Behav Neurosci 105: 282–288, 1991 [PubMed] [Google Scholar]

1111. Smith C, Young J, Young W. Prolonged increases in paradoxical sleep during and after avoidance-task acquisition. Sleep 3: 67–81, 1980 [PubMed] [Google Scholar]

1112. Smith CaFA. Amounts of REM sleep and stage 2 required for efficient learning. Sleep 26: 690, 1997 [Google Scholar]

1113. Smith CBS. Paradoxical sleep at selective times following training is necessary for learning. Physiol Behav 29: 469–473, 1982 [PubMed] [Google Scholar]

1114. Smith CT, Aubrey JB, Peters KR. Different roles for REM and Stage 2 sleep in motor learning: a proposed model. Psychol Belg 44: 81–104, 2004 [Google Scholar]

1115. Smith CT, Conway JM, Rose GM. Brief paradoxical sleep deprivation impairs reference, but not working, memory in the radial arm maze task. Neurobiol Learn Mem 69: 211–217, 1998 [PubMed] [Google Scholar]

1116. Smith CT, Lapp L. Prolonged increases in both PS and number of REMS following a shuttle avoidance task. Physiol Behav 36: 1053–1057, 1986 [PubMed] [Google Scholar]

1117. Smith MacNeill. Impaired motor memory for a pursuit rotor task following Stage 2 sleep loss in college students. J Sleep Res 3: 206–213, 1994 [PubMed] [Google Scholar]

1118. Soeter M, Kindt M. Dissociating response systems: erasing fear from memory. Neurobiol Learn Mem 94: 30–41, 2010 [PubMed] [Google Scholar]

1119. Sokolov EN, Vinogradova OS. Neuronal Mechanisms of the Orienting Reflex. Hillsdale, NY: Erlbaum, 1975 [Google Scholar]

1120. Solodkin M, Cardona A, Corsi-Cabrera M. Paradoxical sleep augmentation after imprinting in the domestic chick. Physiol Behav 35: 343–348, 1985 [PubMed] [Google Scholar]

1121. Sommer T, Rose M, Weiller C, Büchel C. Contributions of occipital, parietal and parahippocampal cortex to encoding of object-location associations. Neuropsychologia 43: 732–743, 2005 [PubMed] [Google Scholar]

1122. Song S, Howard JH, Howard DV. Sleep does not benefit probabilistic motor sequence learning. J Neurosci 27: 12475–12483, 2007 [PMC free article] [PubMed] [Google Scholar]

1123. Song SS. Explicit/implicit interactions in motor sequence learning. Dissertation Abstr Int B Sci Eng 69: 5086, 2009 [Google Scholar]

1124. Spangelo BL, Hall NR, Ross PC, Goldstein AL. Stimulation of in vivo antibody production and concanavalin-A-induced mouse spleen cell mitogenesis by prolactin. Immunopharmacology 14: 11–20, 1987 [PubMed] [Google Scholar]

1125. Späth-Schwalbe E, Hundenborn C, Kern W, Fehm HL, Born J. Nocturnal wakefulness inhibits growth hormone (GH)-releasing hormone-induced GH secretion. J Clin Endocrinol Metab 80: 214–219, 1995 [PubMed] [Google Scholar]

1126. Späth-Schwalbe E, Uthgenannt D, Voget G, Kern W, Born J, Fehm HL. Corticotropin-releasing hormone-induced adrenocorticotropin and cortisol secretion depends on sleep and wakefulness. J Clin Endocrinol Metab 77: 1170–1173, 1993 [PubMed] [Google Scholar]

1127. Spencer RMC, Gouw AM, Ivry RB. Age-related decline of sleep-dependent consolidation. Learn Mem 14: 480–484, 2007 [PubMed] [Google Scholar]

1128. Spencer RMC, Sunm M, Ivry RB. Sleep-dependent consolidation of contextual learning. Curr Biol 16: 1001–1005, 2006 [PubMed] [Google Scholar]

1129. Spiegel K, Luthringer R, Follenius M, Schaltenbrand N, Macher JP, Muzet A, Brandenberger G. Temporal relationship between prolactin secretion and slow-wave electroencephalic activity during sleep. Sleep 18: 543–548, 1995 [PubMed] [Google Scholar]

1130. Spiegel K, Sheridan JF, van Cauter E. Effect of sleep deprivation on response to immunization. JAMA 288: 1471–1472, 2002 [PubMed] [Google Scholar]

1131. Spight JB. Day and night intervals and the distribution of practice. J Exp Psychol 6, 1928 [Google Scholar]

1132. Spoormaker VI, Czisch M, Maquet P, Jäncke L. Large-scale functional brain networks in human non-rapid eye movement sleep: insights from combined electroencephalographic/functional magnetic resonance imaging studies. Philos Transact A Math Phys Eng Sci 369: 3708–3729, 2011 [PubMed] [Google Scholar]

1133. Spoormaker VI, Schröter MS, Andrade KC, Dresler M, Kiem SA, Goya-Maldonado R, Wetter TC, Holsboer F, Sämann PG, Czisch M. Effects of rapid eye movement sleep deprivation on fear extinction recall and prediction error signaling. Hum Brain Mapp Advanced Online Publication 2011 [PMC free article] [PubMed] [Google Scholar]

1134. Squire LR, Zola SM. Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci USA 93: 13515–13522, 1996 [PMC free article] [PubMed] [Google Scholar]

1135. Stefaniak N, Willems S, Adam S, Meulemans T. What is the impact of the explicit knowledge of sequence regularities on both deterministic and probabilistic serial reaction time task performance? Mem Cogn 36: 1283–1298, 2008 [PubMed] [Google Scholar]

1136. Stephenson JR, Lee J, Bailey N, Sheperd AG, Melling J. Adjuvant effect of human growth-hormone with an inactivated flavivirus vaccine. J Infect Dis 164: 188–191, 1991 [PubMed] [Google Scholar]

1137. Steriade M. Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101: 243–276, 2000 [PubMed] [Google Scholar]

1138. Steriade M. Grouping of brain rhythms in corticothalamic systems. Neuroscience 137: 1087–1106, 2006 [PubMed] [Google Scholar]

1139. Steriade M, Amzica F. Sleep oscillations developing into seizures in corticothalamic systems. Epilepsia 44: 9–20, 2003 [PubMed] [Google Scholar]

1140. Steriade M, Contreras D, Curró Dossi R, Nuñez A. The slow (1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. J Neurosci 13: 3284–3299, 1993 [PMC free article] [PubMed] [Google Scholar]

1141. Steriade M, Deschênes M, Domich L, Mulle C. Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami. J Neurophysiol 54: 1473–1497, 1985 [PubMed] [Google Scholar]

1142. Steriade M, Domich L, Oakson G, Deschênes M. The deafferented reticular thalamic nucleus generates spindle rhythmicity. J Neurophysiol 57: 260–273, 1987 [PubMed] [Google Scholar]

1143. Steriade M, McCormick DA, Sejnowski TJ. Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679–685, 1993 [PubMed] [Google Scholar]

1144. Steriade M, Nuñez A, Amzica F. A novel slow (1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13: 3252–3265, 1993 [PMC free article] [PubMed] [Google Scholar]

1145. Steriade M, Nuñez A, Amzica F. Intracellular analysis of relations between the slow (1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13: 3266–3283, 1993 [PMC free article] [PubMed] [Google Scholar]

1146. Steriade M, Timofeev I, Grenier F. Natural waking and sleep states: a view from inside neocortical neurons. J Neurophysiol 85: 1969–1985, 2001 [PubMed] [Google Scholar]

1147. Sterpenich V, Albouy G, Boly M, Vandewalle G, Darsaud A, Balteau E, Dang-Vu TT, Desseilles M, D'Argembeau A, Gais S, Rauchs G, Schabus M, Degueldre C, Luxen A, Collette F, Maquet P. Sleep-related hippocampo-cortical interplay during emotional memory recollection. PLoS Biol 5: e282, 2007 [PMC free article] [PubMed] [Google Scholar]

1148. Sterpenich V, Albouy G, Darsaud A, Schmidt C, Vandewalle G, Dang Vu TT, Desseilles M, Phillips C, Degueldre C, Balteau E, Collette F, Luxen A, Maquet P. Sleep promotes the neural reorganization of remote emotional memory. J Neurosci 29: 5143–5152, 2009 [PMC free article] [PubMed] [Google Scholar]

1149. Stickgold R. Sleep-dependent memory consolidation. Nature 437: 1272–1278, 2005 [PubMed] [Google Scholar]

1150. Stickgold R. Sleep: the ebb and flow of memory consolidation. Curr Biol 18: R423–R425, 2008 [PubMed] [Google Scholar]

1152. Stickgold R, Hobson JA, Fosse R, Fosse M. Sleep, learning, and dreams: off-line memory reprocessing. Science 294: 1052–1057, 2001 [PubMed] [Google Scholar]

1153. Stickgold R, James L, Hobson JA. Visual discrimination learning requires sleep after training. Nat Neurosci 3: 1237–1238, 2000 [PubMed] [Google Scholar]

1154. Stickgold R, Scott L, Rittenhouse C, Hobson JA. Sleep-induced changes in associative memory. J Cogn Neurosci 11: 182–193, 1999 [PubMed] [Google Scholar]

1155. Stickgold R, Walker MP. Memory consolidation and reconsolidation: what is the role of sleep? Trends Neurosci 28: 408–415, 2005 [PubMed] [Google Scholar]

1156. Stickgold R, Walker MP. Sleep-dependent memory consolidation and reconsolidation. Sleep Med 8: 331–343, 2007 [PMC free article] [PubMed] [Google Scholar]

1157. Stickgold R, Whidbee D, Schirmer B, Patel V, Hobson JA. Visual discrimination task improvement: a multi-step process occurring during sleep. J Cogn Neurosci 12: 246–254, 2000 [PubMed] [Google Scholar]

1158. Straub RH, Cutolo M. Circadian rhythms in rheumatoid arthritis: implications for pathophysiology and therapeutic management. Arthritis Rheum 56: 399–408, 2007 [PubMed] [Google Scholar]

1159. Straube B. An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories. Behav Brain Funct 8: 35, 2012 [PMC free article] [PubMed] [Google Scholar]

1160. Strecker RE, Morairty S, Thakkar MM, Porkka-Heiskanen T, Basheer R, Dauphin LJ, Rainnie DG, Portas CM, Greene RW, McCarley RW. Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res 115: 183–204, 2000 [PubMed] [Google Scholar]

1161. Süer C, Dolu N, Artis AS, Sahin L, Yilmaz A, Cetin A. The effects of long-term sleep deprivation on the long-term potentiation in the dentate gyrus and brain oxidation status in rats. Neurosci Res 70: 71–77, 2011 [PubMed] [Google Scholar]

1162. Sun Y, Wu C, Renger JJ, Uebele VN, Lu H, Beierlein M. GABAergic synaptic transmission triggers action potentials in thalamic reticular nucleus neurons. J Neurosci 32: 7782–7790, 2012 [PMC free article] [PubMed] [Google Scholar]

1163. Sutherland GR, McNaughton B. Memory trace reactivation in hippocampal and neocortical neuronal ensembles. Curr Opin Neurobiol 10: 180–186, 2000 [PubMed] [Google Scholar]

1164. Swan GE, Reed T, Jack LM, Miller BL, Markee T, Wolf PA, DeCarli C, Carmelli D. Differential genetic influence for components of memory in aging adult twins. Arch Neurol 56: 1127–1132, 1999 [PubMed] [Google Scholar]

1165. Tafti M, Chollet D, Valatx JL, Franken P. Quantitative trait loci approach to the genetics of sleep in recombinant inbred mice. J Sleep Res 8 Suppl 1: 37–43, 1999 [PubMed] [Google Scholar]

1166. Tafti M, Franken P, Kitahama K, Malafosse A, Jouvet M, Valatx JL. Localization of candidate genomic regions influencing paradoxical sleep in mice. Neuroreport 8: 3755–3758, 1997 [PubMed] [Google Scholar]

1167. Tafti M, Maret S, Dauvilliers Y. Genes for normal sleep and sleep disorders. Ann Med 37: 580–589, 2005 [PubMed] [Google Scholar]

1168. Tagney J. Sleep patterns related to rearing rats in enriched and impoverished environments. Brain Res: 353–361, 1973 [PubMed] [Google Scholar]

1169. Takashima A, Nieuwenhuis IL, Jensen O, Talamini LM, Rijpkema M, Fernandez G. Shift from hippocampal to neocortical centered retrieval network with consolidation. J Neurosci 29: 10087–10093, 2009 [PMC free article] [PubMed] [Google Scholar]

1170. Takashima A, Petersson KM, Rutters F, Tendolkar I, Jensen O, Zwarts MJ, McNaughton BL, Fernandez G. Declarative memory consolidation in humans: a prospective functional magnetic resonance imaging study. Proc Natl Acad Sci USA 103: 756–761, 2006 [PMC free article] [PubMed] [Google Scholar]

1171. Talaei SA, Sheibani V, Salami M. Light deprivation improves melatonin related suppression of hippocampal plasticity. Hippocampus 20: 447–455, 2010 [PubMed] [Google Scholar]

1172. Talamini LM, Nieuwenhuis ILC, Takashima A, Jensen O. Sleep directly following learning benefits consolidation of spatial associative memory. Learn Mem 15: 233–237, 2008 [PubMed] [Google Scholar]

1173. Tamaki M, Matsuoka T, Nittono H, Hori T. Fast sleep spindle (13–15 Hz) activity correlates with sleep-dependent improvement in visuomotor performance. Sleep 31: 204–211, 2008 [PMC free article] [PubMed] [Google Scholar]

1174. Tamaki M, Matsuoka T, Nittono H, Hori T. Activation of fast sleep spindles at the premotor cortex and parietal areas contributes to motor learning: a study using sLORETA. Clin Neurophysiol 120: 878–886, 2009 [PubMed] [Google Scholar]

1175. Tamminen J, Payne JD, Stickgold R, Wamsley EJ, Gaskell MG. Sleep spindle activity is associated with the integration of new memories and existing knowledge. J Neurosci 30: 14356–14360, 2010 [PMC free article] [PubMed] [Google Scholar]

1176. Tan X, Campbell IG, Feinberg I. Internight reliability and benchmark values for computer analyses of non-rapid eye movement (NREM) and REM EEG in normal young adult and elderly subjects. Clin Neurophysiol 112: 1540–1552, 2001 [PubMed] [Google Scholar]

1177. Tan X, Campbell IG, Palagini L, Feinberg I. High internight reliability of computer-measured NREM delta, sigma, and beta: biological implications. Biol Psychiatry 48: 1010–1019, 2000 [PubMed] [Google Scholar]

1178. Taras H, Potts-Datema W. Sleep and student performance at school. J Sch Health 75: 248–254, 2005 [PubMed] [Google Scholar]

1179. Tartar JL, Ward CP, McKenna JT, Thakkar M, Arrigoni E, McCarley RW, Brown RE, Strecker RE. Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. Eur J Neurosci 23: 2739–2748, 2006 [PMC free article] [PubMed] [Google Scholar]

1180. Tatsuno M, Lipa P, McNaughton BL. Methodological considerations on the use of template matching to study long-lasting memory trace replay. J Neurosci 26: 10727–10742, 2006 [PMC free article] [PubMed] [Google Scholar]

1181. Tchernichovski O, Lints T, Mitra PP, Nottebohm F. Vocal imitation in zebra finches is inversely related to model abundance. Proc Natl Acad Sci USA 96: 12901–12904, 1999 [PMC free article] [PubMed] [Google Scholar]

1182. Teber I, Kohling R, Speckmann EJ, Barnekow A, Kremerskothen J. Muscarinic acetylcholine receptor stimulation induces expression of the activity-regulated cytoskeleton-associated gene (ARC). Brain Res 121: 131–136, 2004 [PubMed] [Google Scholar]

1183. Terman L. Genetic Studies of Genius: Mental and Physical Traits of WOO Gifted C. Stanford, CA.: Stanford Univ. Press, 1925 [Google Scholar]

1184. Terrier G, Gottesmann CL. Study of cortical spindles during sleep in the rat. Brain Res Bull 3: 701–706, 1978 [PubMed] [Google Scholar]

1185. Thomas KM, Hunt RH, Vizueta N, Sommer T, Durston S, Yang Y, Worden MS. Evidence of developmental differences in implicit sequence learning: an fMRI study of children and adults. J Cogn Neurosci 16: 1339–1351, 2004 [PubMed] [Google Scholar]

1186. Thomas M, Sing H, Belenky G, Holcomb H, Mayberg H, Dannals R, Wagner H, Thorne D, Popp K, Rowland L, Welsh A, Balwinski S, Redmond D. Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J Sleep Res 9: 335–352, 2000 [PubMed] [Google Scholar]

1187. Thomas T, Thomas G, McLendon C, Sutton T, Mullan M. beta-Amyloid-mediated vasoactivity and vascular endothelial damage. Nature 380: 168–171, 1996 [PubMed] [Google Scholar]

1188. Thorndike EL. Educational Psychology, Vol 2: The Psychology of Learning. New York: Teacher's College Press, 1913 [Google Scholar]

1189. Thurstone LL, Thurstone TG. Factorial studies of intelligence. Psychometric Monographs 94, 1941 [Google Scholar]

1190. Tilley A, Statham D. The effect of prior sleep on retrieval. Acta Psychol 70: 199–203, 1989 [PubMed] [Google Scholar]

1191. Tilley AJ. Retention over a period of REM or non-REM sleep. Br J Psychol 72: 241–248, 1981 [Google Scholar]

1192. Tilley AJ, Empson JA. REM sleep and memory consolidation. Biol Psychol 6: 293–300, 1978 [PubMed] [Google Scholar]

1193. Timofeev I. Neuronal plasticity and thalamocortical sleep and waking oscillations. Prog Brain Res 193: 121–144, 2011 [PMC free article] [PubMed] [Google Scholar]

1194. Timofeev I, Bazhenov M, Sejnowski T, Steriade M. Cortical hyperpolarization-activated depolarizing current takes part in the generation of focal paroxysmal activities. Proc Natl Acad Sci USA 99: 9533–9537, 2002 [PMC free article] [PubMed] [Google Scholar]

1195. Timofeev I, Bazhenov M, Sejnowski TJ, Steriade M. Contribution of intrinsic and synaptic factors in the desynchronization of thalamic oscillatory activity. Thalamus Related Systems 1: 53–69, 2001 [Google Scholar]

1196. Timofeev I, Chauvette S. Thalamocortical oscillations: local control of EEG slow waves. Curr Top Med Chem 11: 2457–2471, 2011 [PubMed] [Google Scholar]

1197. Timofeev I, Grenier F, Bazhenov M, Houweling AR, Sejnowski TJ, Steriade M. Short- and medium-term plasticity associated with augmenting responses in cortical slabs and spindles in intact cortex of cats in vivo. J Physiol 542: 583–598, 2002 [PMC free article] [PubMed] [Google Scholar]

1198. Timofeev I, Grenier F, Bazhenov M, Sejnowski TJ, Steriade M. Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex 10: 1185–1199, 2000 [PubMed] [Google Scholar]

1199. Timofeev I, Grenier F, Steriade M. Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proc Natl Acad Sci USA 98: 1924–1929, 2001 [PMC free article] [PubMed] [Google Scholar]

1200. Timofeev I, Steriade M. Low-frequency rhythms in the thalamus of intact-cortex and decorticated cats. J Neurophysiol 76: 4152–4168, 1996 [PubMed] [Google Scholar]

1201. Tinguely G, Finelli LA, Landolt H, Borbély AA, Achermann P. Functional EEG topography in sleep and waking: state-dependent and state-independent features. Neuroimage 32: 283–292, 2006 [PubMed] [Google Scholar]

1202. Tononi G, Cirelli C. Some considerations on sleep and neural plasticity. Arch Ital Biol 139: 221–241, 2001 [PubMed] [Google Scholar]

1203. Tononi G, Cirelli C. Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62: 143–150, 2003 [PubMed] [Google Scholar]

1204. Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev 10: 49–62, 2006 [PubMed] [Google Scholar]

1205. Toth LA. Sleep, sleep-deprivation and infectious disease: studies in animals. Adv Neuroimmunol 5: 79–92, 1995 [PubMed] [Google Scholar]

1206. Toth LA, Rehg JE. Effects of sleep deprivation and other stressors on the immune and inflammatory responses of influenza-infected mice. Life Sci 63: 701–709, 1998 [PubMed] [Google Scholar]

1207. Trachsel L, Dijk DJ, Brunner DP, Klene C, Borbély AA. Effect of zopiclone and midazolam on sleep and EEG spectra in a phase-advanced sleep schedule. Neuropsychopharmacology 3: 11–18, 1990 [PubMed] [Google Scholar]

1208. Tronson NC, Taylor JR. Molecular mechanisms of memory reconsolidation. Nat Rev Neurosci 8: 262–275, 2007 [PubMed] [Google Scholar]

1209. Tsanov M, Manahan-Vaughan D. Synaptic plasticity from visual cortex to hippocampus: systems integration in spatial information processing. Neuroscientist 14: 584–597, 2008 [PubMed] [Google Scholar]

1210. Tse D, Langston RF, Kakeyama M, Bethus I, Spooner PA, Wood ER, Witter MP, Morris RGM. Schemas and memory consolidation. Science 316: 76–82, 2007 [PubMed] [Google Scholar]

1211. Tse D, Takeuchi T, Kakeyama M, Kajii Y, Okuno H, Tohyama C, Bito H, Morris RGM. Schema-dependent gene activation and memory encoding in neocortex. Science 333: 891–895, 2011 [PubMed] [Google Scholar]

1212. Tsui J, Schwartz N, Ruthazer ES. A developmental sensitive period for spike timing-dependent plasticity in the retinotectal projection. Front Synaptic Neurosci 2: 13, 2010 [PMC free article] [PubMed] [Google Scholar]

1213. Tucker AM, Dinges DF, van Dongen HPA. Trait interindividual differences in the sleep physiology of healthy young adults. J Sleep Res 16: 170–180, 2007 [PubMed] [Google Scholar]

1214. Tucker M, McKinley S, Stickgold R. Sleep optimizes motor skill in older adults. J Am Geriatr Soc 59: 603–609, 2011 [PMC free article] [PubMed] [Google Scholar]

1215. Tucker MA, Fishbein W. Enhancement of declarative memory performance following a daytime nap is contingent on strength of initial task acquisition. Sleep 31: 197–203, 2008 [PMC free article] [PubMed] [Google Scholar]

1216. Tucker MA, Fishbein W. The impact of sleep duration and subject intelligence on declarative and motor memory performance: how much is enough? J Sleep Res 18: 304–312, 2009 [PubMed] [Google Scholar]

1217. Tucker MA, Hirota Y, Wamsley EJ, Lau H, Chaklader A, Fishbein W. A daytime nap containing solely non-REM sleep enhances declarative but not procedural memory. Neurobiol Learn Mem 86: 241–247, 2006 [PubMed] [Google Scholar]

1218. Tulving E. Elements of episodic memory. New York: Clarendon, 1983 [Google Scholar]

1219. Turrigiano G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci 34: 89–103, 2011 [PubMed] [Google Scholar]

1220. Turrigiano GG. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135: 422–435, 2008 [PMC free article] [PubMed] [Google Scholar]

1221. Uchida S, Atsumi Y, Kojima T. Dynamic relationships between sleep spindles and delta waves during a NREM period. Brain Res Bull 33: 351–355, 1994 [PubMed] [Google Scholar]

1222. Uchida S, Maehara T, Hirai N, Kawai K, Shimizu H. Theta oscillation in the anterior cingulate and beta-1 oscillation in the medial temporal cortices: a human case report. J Clin Neurosci 10: 371–374, 2003 [PubMed] [Google Scholar]

1223. Uchida S, Maehara T, Hirai N, Okubo Y, Shimizu H. Cortical oscillations in human medial temporal lobe during wakefulness and all-night sleep. Brain Res 891: 7–19, 2001 [PubMed] [Google Scholar]

1224. Uebele VN, Nuss CE, Santarelli VP, Garson SL, Kraus RL, Barrow JC, Stauffer SR, Koblan KS, Renger JJ, Aton S, Seibt J, Dumoulin M, Jha SK, Coleman T, Frank MG. T-type calcium channels regulate cortical plasticity in-vivo. Neuroreport 20: 257–262, 2009 [PMC free article] [PubMed] [Google Scholar]

1225. Ulloor J, Datta S. Spatio-temporal activation of cyclic AMP response element-binding protein, activity-regulated cytoskeletal-associated protein and brain-derived nerve growth factor: a mechanism for pontine-wave generator activation-dependent two-way active-avoidance memory processing in the rat. J Neurochem 95: 418–428, 2005 [PubMed] [Google Scholar]

1226. Valatx JL, Bugat R, Jouvet M. Genetic studies of sleep in mice. Nature 238: 226–227, 1972 [PubMed] [Google Scholar]

1227. Van Beijsterveldt CEM, van Baal GCM. Twin and family studies of the human electroencephalogram: a review and a meta-analysis. Biol Psychol 61: 111–138, 2002 [PubMed] [Google Scholar]

1228. Van Cauter E, Plat L, Scharf MB, Leproult R, Cespedes S, L'Hermite-Baleriaux M, Copinschi G. Simultaneous stimulation of slow-wave sleep and growth hormone secretion by gamma-hydroxybutyrate in normal young Men. J Clin Invest 100: 745–753, 1997 [PMC free article] [PubMed] [Google Scholar]

1229. van Cauter E, Spiegel K, Tasali E, Leproult R. Metabolic consequences of sleep and sleep loss. Sleep Med 9 Suppl 1: S23–S28, 2008 [PMC free article] [PubMed] [Google Scholar]

1230. Van der Helm E, Gujar N, Nishida M, Walker MP. Sleep-dependent facilitation of episodic memory details. PLoS One 6: e27421, 2011 [PMC free article] [PubMed] [Google Scholar]

1231. Van der Helm E, Yao J, Dutt S, Rao V, Saletin JM, Walker MP. REM sleep depotentiates amygdala activity to previous emotional experiences. Curr Biol 21: 2029–2032, 2011 [PMC free article] [PubMed] [Google Scholar]

1232. Van der Werf YD, Altena E, Schoonheim MM, Sanz-Arigita EJ, Vis JC, Rijke de W, van Someren EJW. Sleep benefits subsequent hippocampal functioning. Nat Neurosci 12: 122–123, 2009 [PubMed] [Google Scholar]

1233. Van der Werf YD, Altena E, Vis JC, Koene T, van Someren EJW. Reduction of nocturnal slow-wave activity affects daytime vigilance lapses and memory encoding but not reaction time or implicit learning. Prog Brain Res 193: 245–255, 2011 [PubMed] [Google Scholar]

1234. Van der Werf YD, van der Helm E, Schoonheim MM, Ridderikhoff A, van Someren EJW. Learning by observation requires an early sleep window. Proc Natl Acad Sci USA 106: 18926–18930, 2009 [PMC free article] [PubMed] [Google Scholar]

1235. Van Dongen EV, Takashima A, Barth M, Zapp J, Schad LR, Paller KA, Fernández G. Memory stabilization with targeted reactivation during human slow-wave sleep. Proc Natl Acad Sci USA 109: 10575–10580, 2012 [PMC free article] [PubMed] [Google Scholar]

1236. Van Dongen EV, Thielen J, Takashima A, Barth M, Fernández G. Sleep supports selective retention of associative memories based on relevance for future utilization. PLoS One 7: e43426, 2012 [PMC free article] [PubMed] [Google Scholar]

1237. Van Hemmen J. Hebbian learning, its correlation catastrophe, and unlearning. Network Comput Neural Syst 8: V1–V17, 1997 [Google Scholar]

1238. Van Hulzen ZJ, Coenen AM. Selective deprivation of paradoxical sleep and consolidation of shuttle-box avoidance. Physiol Behav 23: 821–826, 1979 [PubMed] [Google Scholar]

1239. Van Kesteren MTR, Ruiter DJ, Fernández G, Henson RN. How schema and novelty augment memory formation. Trends Neurosci 35: 211–219, 2012 [PubMed] [Google Scholar]

1241. Van Ormer EB. Retention after intervals of sleep and of waking. Arch Psychol 137: 1–49, 1932 [Google Scholar]

1242. van Ormer EB. Sleep and retention. Psychol Bull 415–439, 1933 [Google Scholar]

1243. Vandekerckhove M, Cluydts R. The emotional brain and sleep: an intimate relationship. Sleep Med Rev 14: 219–226, 2010 [PubMed] [Google Scholar]

1244. Vandewalle G, Archer SN, Wuillaume C, Balteau E, Degueldre C, Luxen A, Maquet P, Dijk D. Functional magnetic resonance imaging-assessed brain responses during an executive task depend on interaction of sleep homeostasis, circadian phase, and PER3 genotype. J Neurosci 29: 7948–7956, 2009 [PMC free article] [PubMed] [Google Scholar]

1245. Vazquez J, Hall SC, Witkowska HE, Greco MA. Rapid alterations in cortical protein profiles underlie spontaneous sleep and wake bouts. J Cell Biochem 105: 1472–1484, 2008 [PubMed] [Google Scholar]

1246. Vecsey CG, Baillie GS, Jaganath D, Havekes R, Daniels A, Wimmer M, Huang T, Brown KM, Li XY, Descalzi G, Kim SS, Chen T, Shang YZ, Zhuo M, Houslay MD, Abel T. Sleep deprivation impairs cAMP signalling in the hippocampus. Nature 461: 1122–1125, 2009 [PMC free article] [PubMed] [Google Scholar]

1247. Vecsey CG, Peixoto L, Choi JHK, Wimmer M, Jaganath D, Hernandez PJ, Blackwell J, Meda K, Park AJ, Hannenhalli S, Abel T. Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus. Physiol Rev 44: 981–991, 2012 [PMC free article] [PubMed] [Google Scholar]

1248. Verleger R, Schuknecht S, Jaskowski P, Wagner U. Changes in processing of masked stimuli across early- and late-night sleep: a study on behavior and brain potentials. Brain Cognition 68: 180–192, 2008 [PubMed] [Google Scholar]

1249. Verschoor GJ, Holdstock TL. REM bursts and REM sleep following visual and auditory learning. S Afr J Psychol 14: 69–74, 1984 [Google Scholar]

1250. Vertes RP. Memory consolidation in sleep: dream or reality. Neuron 44: 135–148, 2004 [PubMed] [Google Scholar]

1251. Vertes RP. Hippocampal theta rhythm: a tag for short-term memory. Hippocampus 15: 923–935, 2005 [PubMed] [Google Scholar]

1252. Vertes RP, Eastman KE. The case against memory consolidation in REM sleep. Behav Brain Sci 23: 867–876, 904,–1018, 1083–1121, 2000 [PubMed] [Google Scholar]

1253. Vertes RP, Siegel JM. Time for the sleep community to take a critical look at the purported role of sleep in memory processing. Sleep 28: 1228–1233, 2005 [PMC free article] [PubMed] [Google Scholar]

1254. Vescia S, Mandile P, Montagnese P, Romano F. Baseline transition sleep and associated sleep episodes are related to the learning ability of rats. Physiol Behav 60: 1513–1525, 1996 [PubMed] [Google Scholar]

1255. Vienne J, Lecciso G, Constantinescu I, Schwartz S, Franken P, Heinzer R, Tafti M. Differential effects of sodium oxybate and baclofen on EEG, sleep, neurobehavioral performance, and memory. Sleep 35: 1071–1083, 2012 [PMC free article] [PubMed] [Google Scholar]

1256. Viola AU, Archer SN, James LM, Groeger JA, Lo JCY, Skene DJ, Schantz von M, Dijk D. PER3 polymorphism predicts sleep structure and waking performance. Curr Biol 17: 613–618, 2007 [PubMed] [Google Scholar]

1257. Vitale-Neugebauer A, Giuditta A, Vitale B, Giaquinto S. Pattern of RNA synthesis in rabbit cortex during sleep. J Neurochem 17: 1263–1273, 1970 [PubMed] [Google Scholar]

1258. Vitetta ES, Berton MT, Burger C, Kepron M, Lee WT, Yin XM. Memory B and T cells. Annu Rev Immunol 9: 193–217, 1991 [PubMed] [Google Scholar]

1259. Voderholzer U, Piosczyk H, Holz J, Landmann N, Feige B, Loessl B, Kopasz M, Doerr JP, Riemann D, Nissen C. Sleep restriction over several days does not affect long-term recall of declarative and procedural memories in adolescents. Sleep Med 12: 170–178, 2011 [PubMed] [Google Scholar]

1260. Vogel GW. A review of REM sleep deprivation. Arch Gen Psychiatry 32: 749–761, 1975 [PubMed] [Google Scholar]

1261. Volgushev M, Chauvette S, Mukovski M, Timofeev I. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations. J Neurosci 26: 5665–5672, 2006 [PMC free article] [PubMed] [Google Scholar]

1262. Volk HE, McDermott KB, Roediger HL, Todd RD. Genetic influences on free and cued recall in long-term memory tasks. Twin Res Hum Genet 9: 623–631, 2006 [PubMed] [Google Scholar]

1263. Vyazovskiy V, Borbély AA, Tobler I. Unilateral vibrissae stimulation during waking induces interhemispheric EEG asymmetry during subsequent sleep in the rat. J Sleep Res 9: 367–371, 2000 [PubMed] [Google Scholar]

1264. Vyazovskiy VV, Cirelli C, Pfister-Genskow M, Faraguna U, Tononi G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci 11: 200–208, 2008 [PubMed] [Google Scholar]

1265. Vyazovskiy VV, Cirelli C, Tononi G, Tobler I. Cortical metabolic rates as measured by 2-deoxyglucose-uptake are increased after waking and decreased after sleep in mice. Brain Res Bull 75: 591–597, 2008 [PMC free article] [PubMed] [Google Scholar]

1266. Vyazovskiy VV, Deboer T, Rudy B, Lau D, Borbély AA, Tobler I. Sleep EEG in mice that are deficient in the potassium channel subunit Kv3.2. Brain Res 947: 204–211, 2002 [PubMed] [Google Scholar]

1267. Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G. Local sleep in awake rats. Nature 472: 443–447, 2011 [PMC free article] [PubMed] [Google Scholar]

1268. Vyazovskiy VV, Olcese U, Lazimy YM, Faraguna U, Esser SK, Williams JC, Cirelli C, Tononi G. Cortical firing and sleep homeostasis. Neuron 63: 865–878, 2009 [PMC free article] [PubMed] [Google Scholar]

1269. Vyazovskiy VV, Riedner BA, Cirelli C, Tononi G. Sleep homeostasis and cortical synchronization. II. A local field potential study of sleep slow waves in the rat. Sleep 30: 1631–1642, 2007 [PMC free article] [PubMed] [Google Scholar]

1270. Wagner JJ, Alger BE. GABAergic and developmental influences on homosynaptic LTD and depotentiation in rat hippocampus. J Neurosci 15: 1577–1586, 1995 [PMC free article] [PubMed] [Google Scholar]

1271. Wagner U, Born J. Memory consolidation during sleep: interactive effects of sleep stages and HPA regulation. Stress 11: 28–41, 2008 [PubMed] [Google Scholar]

1272. Wagner U, Degirmenci M, Drosopoulos S, Perras B, Born J. Effects of cortisol suppression on sleep-associated consolidation of neutral and emotional memory. Biol Psychiatry 58: 885–893, 2005 [PubMed] [Google Scholar]

1273. Wagner U, Fischer S, Born J. Changes in emotional responses to aversive pictures across periods rich in slow-wave sleep versus rapid eye movement sleep. Psychosom Med 64: 627–634, 2002 [PubMed] [Google Scholar]

1274. Wagner U, Gais S, Born J. Emotional memory formation is enhanced across sleep intervals with high amounts of rapid eye movement sleep. Learn Mem 8: 112–119, 2001 [PMC free article] [PubMed] [Google Scholar]

1275. Wagner U, Gais S, Haider H, Verleger R, Born J. Sleep inspires insight. Nature 427: 352–355, 2004 [PubMed] [Google Scholar]

1276. Wagner U, Hallschmid M, Rasch B, Born J. Brief sleep after learning keeps emotional memories alive for years. Biol Psychiatry 60: 788–790, 2006 [PubMed] [Google Scholar]

1277. Wagner U, Hallschmid M, Verleger R, Born J. Signs of REM sleep dependent enhancement of implicit face memory: a repetition priming study. Biol Psychol 62: 197–210, 2003 [PubMed] [Google Scholar]

1278. Wagner U, Kashyap N, Diekelmann S, Born J. The impact of post-learning sleep vs. wakefulness on recognition memory for faces with different facial expressions. Neurobiol Learn Mem 87: 679–687, 2007 [PubMed] [Google Scholar]

1279. Walker MP. A refined model of sleep and the time course of memory formation. Behav Brain Sci 28: 51–104, 2005 [PubMed] [Google Scholar]

1280. Walker MP. Cognitive consequences of sleep and sleep loss. Sleep Med 9 Suppl 1: S29–S34, 2008 [PubMed] [Google Scholar]

1281. Walker MP. Sleep-dependent memory processing. Harv Rev Psychiatry 16: 287–298, 2008 [PubMed] [Google Scholar]

1282. Walker MP. The role of sleep in cognition and emotion. Ann NY Acad Sci 1156: 168–197, 2009 [PubMed] [Google Scholar]

1284. Walker MP. Sleep, memory and emotion. Prog Brain Res 185: 49–68, 2010 [PubMed] [Google Scholar]

1285. Walker MP, Brakefield T, Hobson JA, Stickgold R. Dissociable stages of human memory consolidation and reconsolidation. Nature 425: 616–620, 2003 [PubMed] [Google Scholar]

1286. Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R. Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35: 205–211, 2002 [PubMed] [Google Scholar]

1287. Walker MP, Brakefield T, Seidman J, Morgan A, Hobson JA, Stickgold R. Sleep and the time course of motor skill learning. Learn Mem 10: 275–284, 2003 [PMC free article] [PubMed] [Google Scholar]

1288. Walker MP, Liston C, Hobson JA, Stickgold R. Cognitive flexibility across the sleep-wake cycle: REM-sleep enhancement of anagram problem solving. Brain Res Cogn Brain Res 14: 317–324, 2002 [PubMed] [Google Scholar]

1289. Walker MP, Stickgold R. Sleep-dependent learning and memory consolidation. Neuron 44: 121–133, 2004 [PubMed] [Google Scholar]

1290. Walker MP, Stickgold R. It's practice, with sleep, that makes perfect: implications of sleep-dependent learning and plasticity for skill performance. Clin Sports Med 24: 301–317, 2005 [PubMed] [Google Scholar]

1291. Walker MP, Stickgold R. Sleep, memory, plasticity. Annu Rev Psychol 57: 139–166, 2006 [PubMed] [Google Scholar]

1292. Walker MP, Stickgold R, Alsop D, Gaab N, Schlaug G. Sleep-dependent motor memory plasticity in the human brain. Neuroscience 133: 911–917, 2005 [PubMed] [Google Scholar]

1293. Walker MP, Stickgold R, Jolesz FA, Yoo S. The functional anatomy of sleep-dependent visual skill learning. Cereb Cortex 15: 1666–1675, 2005 [PubMed] [Google Scholar]

1294. Walker MP, van der Helm E. Overnight therapy? The role of sleep in emotional brain processing. Psychol Bull 135: 731–748, 2009 [PMC free article] [PubMed] [Google Scholar]

1295. Walling SG, Harley CW. Locus ceruleus activation initiates delayed synaptic potentiation of perforant path input to the dentate gyrus in awake rats: a novel beta-adrenergic- and protein synthesis-dependent mammalian plasticity mechanism. J Neurosci 24: 598–604, 2004 [PMC free article] [PubMed] [Google Scholar]

1296. Walling SG, Nutt DJ, Lalies MD, Harley CW. Orexin-A infusion in the locus ceruleus triggers norepinephrine (NE) release and NE-induced long-term potentiation in the dentate gyrus. J Neurosci 24: 7421–7426, 2004 [PMC free article] [PubMed] [Google Scholar]

1297. Walsh JK, Hall-Porter JM, Griffin KS, Dodson ER, Forst EH, Curry DT, Eisenstein RD, Schweitzer PK. Enhancing slow wave sleep with sodium oxybate reduces the behavioral and physiological impact of sleep loss. Sleep 33: 1217–1225, 2010 [PMC free article] [PubMed] [Google Scholar]

1298. Walsh JK, Mayleben D, Guico-Pabia C, Vandormael K, Martinez R, Deacon S. Efficacy of the selective extrasynaptic GABA A agonist, gaboxadol, in a model of transient insomnia: a randomized, controlled clinical trial. Sleep Med 9: 393–402, 2008 [PubMed] [Google Scholar]

1299. Walsh JK, Perlis M, Rosenthal M, Krystal A, Jiang J, Roth T. Tiagabine increases slow-wave sleep in a dose-dependent fashion without affecting traditional efficacy measures in adults with primary insomnia. J Clin Sleep Med 2: 35–41, 2006 [PubMed] [Google Scholar]

1300. Walsh JK, Snyder E, Hall J, Randazzo AC, Griffin K, Groeger J, Eisenstein R, Feren SD, Dickey P, Schweitzer PK. Slow wave sleep enhancement with gaboxadol reduces daytime sleepiness during sleep restriction. Sleep 31: 659–672, 2008 [PMC free article] [PubMed] [Google Scholar]

1301. Walsh JK, Zammit G, Schweitzer PK, Ondrasik J, Roth T. Tiagabine enhances slow wave sleep and sleep maintenance in primary insomnia. Sleep Med 7: 155–161, 2006 [PubMed] [Google Scholar]

1302. Wamsley EJ, Perry K, Djonlagic I, Reaven LB, Stickgold R. Cognitive replay of visuomotor learning at sleep onset: temporal dynamics and relationship to task performance. Sleep 33: 59–68, 2010 [PMC free article] [PubMed] [Google Scholar]

1304. Wamsley EJ, Tucker M, Payne JD, Benavides JA, Stickgold R. Dreaming of a learning task is associated with enhanced sleep-dependent memory consolidation. Curr Biol 20: 850–855, 2010 [PMC free article] [PubMed] [Google Scholar]

1305. Wang G, Grone B, Colas D, Appelbaum L, Mourrain P. Synaptic plasticity in sleep: learning, homeostasis and disease. Trends Neurosci 34: 452–463, 2011 [PMC free article] [PubMed] [Google Scholar]

1306. Wang JW, Wu C. Modulation of the frequency response of Shaker potassium channels by the quiver peptide suggesting a novel extracellular interaction mechanism. J Neurogenet 24: 67–74, 2010 [PMC free article] [PubMed] [Google Scholar]

1307. Wang LM, Suthana NA, Chaudhury D, Weaver DR, Colwell CS. Melatonin inhibits hippocampal long-term potentiation. Eur J Neurosci 22: 2231–2237, 2005 [PMC free article] [PubMed] [Google Scholar]

1308. Wang S, Morris RGM. Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu Rev Psychol 61: 49–79, 2010 [PubMed] [Google Scholar]

1309. Watabe AM, Zaki PA, O'Dell TJ. Coactivation of beta-adrenergic and cholinergic receptors enhances the induction of long-term potentiation and synergistically activates mitogen-activated protein kinase in the hippocampal CA1 region. J Neurosci 20: 5924–5931, 2000 [PMC free article] [PubMed] [Google Scholar]

1310. Watts A, Gritton HJ, Sweigart J, Poe GR. Antidepressant suppression of Non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning. J Neurosci 32: 13411–13420, 2012 [PMC free article] [PubMed] [Google Scholar]

1311. Webb WB. An objective behavioral model of sleep. Sleep 11: 488–496, 1988 [PubMed] [Google Scholar]

1312. Wehrle R, Kaufmann C, Wetter TC, Holsboer F, Auer DP, Pollmächer T, Czisch M. Functional microstates within human REM sleep: first evidence from fMRI of a thalamocortical network specific for phasic REM periods. Eur J Neurosci 25: 863–871, 2007 [PubMed] [Google Scholar]

1313. Weingartner HJ, Sirocco K, Rawlings R, Joyce E, Hommer D. Dissociations in the expression of the sedative effects of triazolam. Psychopharmacology 119: 27–33, 1995 [PubMed] [Google Scholar]

1314. Wennberg R. Intracranial cortical localization of the human K-complex. Clin Neurophysiol 121: 1176–1186, 2010 [PubMed] [Google Scholar]

1315. Werk CM, Harbour VL, Chapman CA. Induction of long-term potentiation leads to increased reliability of evoked neocortical spindles in vivo. Neuroscience 131: 793–800, 2005 [PubMed] [Google Scholar]

1316. Wetzel W, Wagner T, Balschun D. REM sleep enhancement induced by different procedures improves memory retention in rats. Eur J Neurosci 18: 2611–2617, 2003 [PubMed] [Google Scholar]

1317. Wierzynski CM, Lubenov EV, Gu M, Siapas AG. State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron 61: 587–596, 2009 [PMC free article] [PubMed] [Google Scholar]

1318. Wilhelm I, Diekelmann S, Born J. Sleep in children improves memory performance on declarative but not procedural tasks. Learn Mem 15: 373–377, 2008 [PubMed] [Google Scholar]

1319. Wilhelm I, Diekelmann S, Molzow I, Ayoub A, Mölle M, Born J. Sleep selectively enhances memory expected to be of future relevance. J Neurosci 31: 1563–1569, 2011 [PMC free article] [PubMed] [Google Scholar]

1320. Wilhelm I, Metzkow-Mészàros M, Knapp S, Born J. Sleep-dependent consolidation of procedural motor memories in children and adults: the pre-sleep level of performance matters. Dev Sci 15: 506–515, 2012 [PubMed] [Google Scholar]

1321. Wilhelm I, Prehn-Kristensen A, Born J. Sleep-dependent memory consolidation–what can be learnt from children? Neurosci Biobehav Rev 36: 1718–1728, 2012 [PubMed] [Google Scholar]

1322. Wilhelm I, Rose M, Rasch B, Imhof KI, Büchel C, Born J. The sleeping child outplays the adult's capacity to convert implicit into explicit knowledge. Nat Neurosci. In press [PubMed] [Google Scholar]

1323. Wilhelm I, Wagner U, Born J. Opposite effects of cortisol on consolidation of temporal sequence memory during waking and sleep. J Cogn Neurosci 23: 3703–3712, 2011 [PubMed] [Google Scholar]

1324. Wilson JK, Baran B, Pace-Schott EF, Ivry RB, Spencer RMC. Sleep modulates word-pair learning but not motor sequence learning in healthy older adults. Neurobiol Aging 2012 [PMC free article] [PubMed] [Google Scholar]

1325. Wilson M, McNaughton BL. Reactivation of hippocampal ensemble memories during sleep. Science 1994 [PubMed] [Google Scholar]

1326. Wimmer RD, Astori S, Bond CT, Rovó Z, Chatton J, Adelman JP, Franken P, Lüthi A. Sustaining sleep spindles through enhanced SK2-channel activity consolidates sleep and elevates arousal threshold. J Neurosci 32: 13917–13928, 2012 [PMC free article] [PubMed] [Google Scholar]

1327. Winocur G, Moscovitch M, Bontempi B. Memory formation and long-term retention in humans and animals: convergence towards a transformation account of hippocampal-neocortical interactions. Neuropsychologia 48: 2339–2356, 2010 [PubMed] [Google Scholar]

1328. Wisor JP, O'Hara BF, Terao A, Selby CP, Kilduff TS, Sancar A, Edgar DM, Franken P. A role for cryptochromes in sleep regulation. BMC Neurosci 3: 20, 2002 [PMC free article] [PubMed] [Google Scholar]

1329. Wisor JP, Pasumarthi RK, Gerashchenko D, Thompson CL, Pathak S, Sancar A, Franken P, Lein ES, Kilduff TS. Sleep deprivation effects on circadian clock gene expression in the cerebral cortex parallel electroencephalographic differences among mouse strains. J Neurosci 28: 7193–7201, 2008 [PMC free article] [PubMed] [Google Scholar]

1330. Witt K, Margraf N, Bieber C, Born J, Deuschl G. Sleep consolidates the effector-independent representation of a motor skill. Neuroscience 171: 227–234, 2010 [PubMed] [Google Scholar]

1331. Wittmann L, Schredl M, Kramer M. Dreaming in posttraumatic stress disorder: a critical review of phenomenology, psychophysiology and treatment. Psychother Psychosom 76: 25–39, 2007 [PubMed] [Google Scholar]

1332. Wixted JT. The psychology and neuroscience of forgetting. Annu Rev Psychol 55: 235–269, 2004 [PubMed] [Google Scholar]

1333. Wolansky T, Clement EA, Peters SR, Palczak MA, Dickson CT. Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity. J Neurosci 26: 6213–6229, 2006 [PMC free article] [PubMed] [Google Scholar]

1334. Wolfowitz BE, Holdstock TL. Paradoxical sleep deprivation and memory in rats. Commun Behav Biol A: 281–284, 1971 [Google Scholar]

1335. Wu CW, Liu P, Tsai P, Wu Y, Hung C, Tsai Y, Cho K, Biswal BB, Chen C, Lin C. Variations in connectivity in the sensorimotor and default-mode networks during the first nocturnal sleep cycle. Brain Connect 2: 177–190, 2012 [PubMed] [Google Scholar]

1336. Wu JC, Gillin JC, Buchsbaum MS, Chen P, Keator DB, Wu NK, Darnall LA, Fallen JH, Bunney WE. Frontal lobe metabolic decreases with sleep deprivation not totally reversed by recovery sleep. Neuropsychopharmacology 31: 2783–2792, 2006 [PubMed] [Google Scholar]

1337. Wu MN, Joiner WJ, Dean T, Yue Z, Smith CJ, Chen D, Hoshi T, Sehgal A, Koh K. SLEEPLESS, a Ly-6/neurotoxin family member, regulates the levels, localization and activity of Shaker. Nat Neurosci 13: 69–75, 2010 [PMC free article] [PubMed] [Google Scholar]

1338. Wu MN, Raizen DM. Notch signaling: a role in sleep and stress. Curr Biol 21: R397–R8, 2011 [PubMed] [Google Scholar]

1339. Xia J, Chen F, Ye J, Yan J, Wang H, Duan S, Hu Z. Activity-dependent release of adenosine inhibits the glutamatergic synaptic transmission and plasticity in the hypothalamic hypocretin/orexin neurons. Neuroscience 162: 980–988, 2009 [PubMed] [Google Scholar]

1340. Yaroush R, Sullivan MJ, Ekstrand BR. Effect of sleep on memory. II. Differential effect of the first and second half of the night. J Exp Psychol 88: 361–366, 1971 [PubMed] [Google Scholar]

1341. Yasuda T, Yasuda K, Brown RA, Krueger JM. State-dependent effects of light-dark cycle on somatosensory and visual cortex EEG in rats. Am J Physiol Regul Integr Comp Physiol 289: R1083–R1089, 2005 [PubMed] [Google Scholar]

1342. Ylinen A, Bragin A, Nádasdy Z, Jandó G, Szabó I, Sik A, Buzsáki G. Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15: 30–46, 1995 [PMC free article] [PubMed] [Google Scholar]

1343. Yonelinas AP. Components of episodic memory: the contribution of recollection and familiarity. Philos Trans R Soc Lond B Biol Sci 356: 1363–1374, 2001 [PMC free article] [PubMed] [Google Scholar]

1344. Yonelinas AP, Aly M, Wang W, Koen JD. Recollection and familiarity: examining controversial assumptions and new directions. Hippocampus 20: 1178–1194, 2010 [PMC free article] [PubMed] [Google Scholar]

1345. Yoo S, Hu PT, Gujar N, Jolesz FA, Walker MP. A deficit in the ability to form new human memories without sleep. Nat Neurosci 10: 385–392, 2007 [PubMed] [Google Scholar]

1346. Yordanova J, Kolev V, Verleger R. Awareness of knowledge or awareness of processing? Implications for sleep-related memory consolidation. Front Hum Neurosci 3: 40, 2009 [PMC free article] [PubMed] [Google Scholar]

1347. Yordanova J, Kolev V, Verleger R, Bataghva Z, Born J, Wagner U. Shifting from implicit to explicit knowledge: different roles of early- and late-night sleep. Learn Mem 15: 508–515, 2008 [PMC free article] [PubMed] [Google Scholar]

1348. Yordanova J, Kolev V, Wagner U, Born J, Verleger R. Increased alpha (8–12 Hz) activity during slow wave sleep as a marker for the transition from implicit knowledge to explicit insight. J Cogn Neurosci 24: 119–132, 2012 [PubMed] [Google Scholar]

1349. Yordanova J, Kolev V, Wagner U, Verleger R. Covert reorganization of implicit task representations by slow wave sleep. PLoS One 4: e5675, 2009 [PMC free article] [PubMed] [Google Scholar]

1350. Yordanova J, Kolev V, Wagner U, Verleger R. Differential associations of early- and late-night sleep with functional brain states promoting insight to abstract task regularity. PLoS One 5: e9442, 2010 [PMC free article] [PubMed] [Google Scholar]

1351. Yotsumoto Y, Sasaki Y, Chan P, Vasios CE, Bonmassar G, Ito N, Náñez JE, Shimojo S, Watanabe T. Location-specific cortical activation changes during sleep after training for perceptual learning. Curr Biol 19: 1278–1282, 2009 [PMC free article] [PubMed] [Google Scholar]

1352. Youngblood BD, Smagin GN, Elkins PD, Ryan DH, Harris RBS. The effects of paradoxical sleep deprivation and valine on spatial learning and brain 5-HT metabolism. Physiol Behav 67: 643–649, 1999 [PubMed] [Google Scholar]

1353. Youngblood BD, Zhou J, Smagin GN, Ryan DH, Harris RB. Sleep deprivation by the “flower pot” technique and spatial reference memory. Physiol Behav 61: 249–256, 1997 [PubMed] [Google Scholar]

1354. Zager A, Andersen ML, Ruiz FS, Antunes IB, Tufik S. Effects of acute and chronic sleep loss on immune modulation of rats. Am J Physiol Regul Integr Comp Physiol 293: R504–R509, 2007 [PubMed] [Google Scholar]

1355. Zeitlhofer J, Gruber G, Anderer P, Asenbaum S, Schimicek P, Saletu B. Topographic distribution of sleep spindles in young healthy subjects. J Sleep Res 6: 149–155, 1997 [PubMed] [Google Scholar]

1356. Zimmerman J, Stoyva J, Metcalf D. Distorted visual feedback and augmented REM sleep. Psychophysiology 7: 298–303, 1970 [Google Scholar]

1357. Zimmerman JE, Rizzo W, Shockley KR, Raizen DM, Naidoo N, Mackiewicz M, Churchill GA, Pack AI. Multiple mechanisms limit the duration of wakefulness in Drosophila brain. Physiol Genomics 27: 337–350, 2006 [PubMed] [Google Scholar]

1358. Zimmerman JT, Stoyva JM, Reite ML. Spatially rearranged vision and REM sleep: a lack of effect. Biol Psychiatry 13: 301–316, 1978 [PubMed] [Google Scholar]

What part of the brain is influential in determining when to sleep?

Neurons in a part of the hypothalamus called the ventrolateral preoptic nucleus (VLPO) connect directly to the many arousal-promoting centers. Rather than stimulating activity in these areas, signals from VLPO neurons inhibit their activity. By shutting down the arousal centers, the VLPO promotes sleep.

Which of the following problems according to researchers are caused by sleep deprivation?

Too little shuteye has been linked to increased risk of car crashes, poor work performance, and problems with mood and relationships. Sleep deprivation taxes the immune system, and is associated with a heightened risk of high blood pressure, heart disease, stroke, diabetes, obesity, and depression.

Which brain part is critical for regulating REM sleep?

The brain stem (especially the pons and medulla) also plays a special role in REM sleep; it sends signals to relax muscles essential for body posture and limb movements, so that we don't act out our dreams.

Which of the following are purposes of sleep as speculated by scientists?

Which of the following are purposes of sleep as speculated by scientists? Allows neurons in the brain to rest.